• 396.05 KB
  • 2021-06-15 发布

【数学】2018届一轮复习苏教版(理)第七章不等式7-2“三个二次”的关系学案

  • 13页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1.“三个二次”的关系 判别式 Δ=b2-4ac Δ>0‎ Δ=0‎ Δ<0‎ 二次函数 y=ax2+bx+c ‎(a>0)的图象 一元二次方程 ax2+bx+c=0‎ ‎(a>0)的根 有两个相异 实根x1,x2‎ ‎(x10‎ ‎(a>0)的解集 ‎(-∞,x1)∪‎ ‎(x2,+∞)‎ ‎(-∞,-)‎ ‎∪(-,+∞)‎ R 一元二次不等式 ax2+bx+c<0‎ ‎(a>0)的解集 ‎(x1,x2)‎ ‎∅‎ ‎∅‎ ‎2.常用结论 ‎(x-a)(x-b)>0或(x-a)(x-b)<0型不等式的解法 不等式 解集 ab ‎(x-a)·(x-b)>0‎ ‎{x|xb}‎ ‎{x|x≠a}‎ ‎{x|xa}‎ ‎(x-a)·(x-b)<0‎ ‎{x|a0(<0)⇔f(x)·g(x)>0(<0).‎ ‎(2)≥0(≤0)⇔f(x)·g(x)≥0(≤0)且g(x)≠0.‎ 以上两式的核心要义是将分式不等式转化为整式不等式.‎ ‎【思考辨析】‎ 判断下列结论是否正确(请在括号中打“√”或“×”)‎ ‎(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( √ )‎ ‎(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( √ )‎ ‎(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( × )‎ ‎(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.( × )‎ ‎(5)若二次函数y=ax2+bx+c的图象开口向下,则不等式ax2+bx+c<0的解集一定不是空集.( √ )‎ ‎1.(教材改编)不等式x2-3x-10>0的解集是______________.‎ 答案 (-∞,-2)∪(5,+∞)‎ 解析 解方程x2-3x-10=0得x1=-2,x2=5,‎ 由于y=x2-3x-10的图像开口向上,所以x2-3x-10>0的解集为(-∞,-2)∪(5,+∞).‎ ‎2.(教材改编)不等式<0的解集是__________.‎ 答案 {x|x<或x>4}‎ 解析 不等式<0等价于(x-)(x-4)>0,‎ ‎∴不等式的解集是{x|x<或x>4}.‎ ‎3.(教材改编)不等式的解集为____________.‎ 答案 (-1,2)‎ 解析 由题意得x2-x<2⇒-10的解集是(-,),则a+b=________.‎ 答案 -14‎ 解析 ∵x1=-,x2=是方程ax2+bx+2=0的两个根,‎ ‎∴解得∴a+b=-14.‎ ‎5.不等式x2+ax+4≤0的解集不是空集,则实数a的取值范围是________________.‎ 答案 (-∞,-4]∪[4,+∞)‎ 解析 ∵x2+ax+4≤0的解集不是空集,则x2+ax+4=0一定有解.‎ ‎∴Δ=a2-4×1×4≥0,即a2≥16,∴a≥4或a≤-4.‎ 题型一 一元二次不等式的求解 命题点1 不含参的不等式 例1 (2016·南京模拟)求不等式-2x2+x+3<0的解集.‎ 解 化-2x2+x+3<0为2x2-x-3>0,‎ 解方程2x2-x-3=0得x1=-1,x2=,‎ ‎∴不等式2x2-x-3>0的解集为(-∞,-1)∪(,+∞),‎ 即原不等式的解集为(-∞,-1)∪(,+∞).‎ 命题点2 含参不等式 例2 解关于x的不等式:x2-(a+1)x+a<0.‎ 解 由x2-(a+1)x+a=0,得(x-a)(x-1)=0,‎ ‎∴x1=a,x2=1,‎ ‎①当a>1时,x2-(a+1)x+a<0的解集为{x|11.‎ 若a<0,原不等式等价于(x-)(x-1)>0,‎ 解得x<或x>1.‎ 若a>0,原不等式等价于(x-)(x-1)<0.‎ ‎①当a=1时,=1,(x-)(x-1)<0无解;‎ ‎②当a>1时,<1,解(x-)(x-1)<0,得1,解(x-)(x-1)<0,得11};‎ 当a=0时,解集为{x|x>1};‎ 当01时,解集为{x|0,则a的取值范围是____________.‎ 答案 (1)(-3,0) (2)[0,4)‎ 解析 (1)∵2kx2+kx-<0为一元二次不等式,‎ ‎∴k≠0,‎ 又2kx2+kx-<0对一切实数x都成立,‎ 则必有解得-30,则必有或a=0,∴0≤a<4.‎ 命题点2 在给定区间上的恒成立问题 例4 设函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<-m+5恒成立,求m的取值范围.‎ 解 要使f(x)<-m+5在x∈[1,3]上恒成立,‎ 即m2+m-6<0在x∈[1,3]上恒成立.‎ 有以下两种方法:‎ 方法一 令g(x)=m2+m-6,x∈[1,3].‎ 当m>0时,g(x)在[1,3]上是增函数,‎ 所以g(x)max=g(3)⇒7m-6<0,‎ 所以m<,所以00,‎ 又因为m(x2-x+1)-6<0,所以m<.‎ 因为函数y==在[1,3]上的最小值为,所以只需m<即可.‎ 所以m的取值范围是.‎ 命题点3 给定参数范围的恒成立问题 例5 对任意m∈[-1,1],函数f(x)=x2+(m-4)x+4-2m的值恒大于零,求x的取值范围.‎ 解 由f(x)=x2+(m-4)x+4-2m ‎=(x-2)m+x2-4x+4,‎ 令g(m)=(x-2)m+x2-4x+4.‎ 由题意知在[-1,1]上,g(m)的值恒大于零,‎ ‎∴ 解得x<1或x>3.‎ 故当x的取值范围为(-∞,1)∪(3,+∞)时,对任意的m∈[-1,1],函数f(x)的值恒大于零.‎ 思维升华 (1)对于一元二次不等式恒成立问题,恒大于0‎ 就是相应的二次函数的图象在给定的区间上全部在x轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.‎ ‎(2)解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.‎ ‎ (1)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是________.‎ 答案 (-,0)‎ 解析 作出二次函数f(x)的草图,对于任意x∈[m,m+1],都有f(x)<0,‎ 则有 即解得-,不满足题意;‎ 当m≠0时,函数f(x)=mx2-2x-m+1为二次函数,‎ 需满足开口向下且方程mx2-2x-m+1=0无解,即 不等式组的解集为空集,即m无解.‎ 综上可知,不存在这样的m.‎ 题型三 一元二次不等式的应用 例6 某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x成(1成=10%),售出商品数量就增加x成.要求售价不能低于成本价.‎ ‎(1)设该商店一天的营业额为y,试求y与x之间的函数关系式y=f(x),并写出定义域;‎ ‎(2)若再要求该商品一天营业额至少为10 260元,求x的取值范围.‎ 解 (1)由题意得,y=100·100.‎ 因为售价不能低于成本价,所以100-80≥0.‎ 所以y=f(x)=40(10-x)(25+4x),定义域为x∈[0,2].‎ ‎(2)由题意得40(10-x)(25+4x)≥10 260,‎ 化简得8x2-30x+13≤0,解得≤x≤.‎ 所以x的取值范围是.‎ 思维升华 求解不等式应用题的四个步骤 ‎(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.‎ ‎(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.‎ ‎(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义.‎ ‎(4)回归实际问题,将数学结论还原为实际问题的结果.‎ ‎ 甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每小时可获得的利润是100(5x+1-)元.‎ ‎(1)要使生产该产品2小时获得的利润不低于3 000元,求x的取值范围;‎ ‎(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.‎ 解 (1)根据题意,得 ‎200(5x+1-)≥3 000,‎ 整理得5x-14-≥0,‎ 即5x2-14x-3≥0,‎ 又1≤x≤10,可解得3≤x≤10.‎ 即要使生产该产品2小时获得的利润不低于3 000元,x的取值范围是[3,10].‎ ‎(2)设利润为y元,则 y=·100(5x+1-)‎ ‎=9×104(5+-)‎ ‎=9×104[-3(-)2+],‎ 故当x=6时,ymax=457 500元.‎ 即甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元.‎ ‎14.转化与化归思想在不等式中的应用 典例 (1)已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)0恒成立,则实数a的取值范围是________.‎ 思想方法指导 函数的值域和不等式的解集转化为a,b满足的条件;不等式恒成立可以分离常数,转化为函数值域问题.‎ 解析 (1)由题意知f(x)=x2+ax+b ‎=2+b-.‎ ‎∵f(x)的值域为[0,+∞),‎ ‎∴b-=0,即b=.‎ ‎∴f(x)=2.‎ 又∵f(x)0恒成立,‎ 即x2+2x+a>0恒成立.‎ 即当x≥1时,a>-(x2+2x)=g(x)恒成立.‎ 而g(x)=-(x2+2x)=-(x+1)2+1在[1,+∞)上单调递减,‎ ‎∴g(x)max=g(1)=-3,故a>-3.‎ ‎∴实数a的取值范围是{a|a>-3}.‎ 答案 (1)9 (2){a|a>-3}‎ ‎1.(教材改编)不等式-3x2+5x-4>0的解集为____________.‎ 答案 ∅‎ 解析 原不等式变形为3x2-5x+4<0.‎ 因为Δ=(-5)2-4×3×4=-23<0,‎ 所以3x2-5x+4=0无解.‎ 由函数y=3x2-5x+4的图象可知,3x2-5x+4<0的解集为∅.‎ ‎2.(教材改编)不等式≤0的解集为__________.‎ 答案 (-,1]‎ 解析 原不等式等价于 即即-0)的解集为(x1,x2),且x2-x1=15,则a=________.‎ 答案  解析 由x2-2ax-8a2<0,‎ 得(x+2a)(x-4a)<0,因为a>0,‎ 所以不等式的解集为(-2a,4a),‎ 即x2=4a,x1=-2a,由x2-x1=15,‎ 得4a-(-2a)=15,解得a=.‎ ‎6.若不等式x2-2x+k2-2>0对于任意的x∈[2,+∞)恒成立,则实数k的取值范围是__________.‎ 答案 (-∞,-)∪(,+∞)‎ 解析 由x2-2x+k2-2>0,得k2>-x2+2x+2,‎ 设f(x)=-x2+2x+2,f(x)=-(x-1)2+3,当x≥2,可求得f(x)max=2,则k2>f(x)max=2,所以k>或k<-.‎ ‎7.已知不等式ax2-bx-1≥0的解集是,则不等式x2-bx-a<0的解集是____________.‎ 答案 (2,3)‎ 解析 由题意知-,-是方程ax2-bx-1=0的根,‎ 所以由根与系数的关系得-+=,-×=-.解得a=-6,b=5,不等式x2-bx-a<0即为x2-5x+6<0,解集为(2,3).‎ ‎8.(教材改编)某厂生产一批产品,日销售量x(单位:件)与货价p(单位:元/件)之间的关系为p=160-2x,生产x件所需成本C=500+30x元.若使得日获利不少于1 300元,则该厂日产量所要满足的条件是__________.‎ 答案 [20,45]‎ 解析 由题意得(160-2x)·x-(500+30x)≥1 300,‎ 解得20≤x≤45.‎ ‎9.若不等式-2≤x2-2ax+a≤-1有唯一解,则a的值为________‎ 答案  解析 若不等式-2≤x2-2ax+a≤-1有唯一解,则x2-2ax+a=-1有两个相等的实根,所以Δ=4a2-4(a+1)=0,解得a=.‎ ‎*10.已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5‎ 的解集是______________________.‎ 答案 {x|-70,∵x≥0时,f(x)=x2-4x,∴f(-x)=(-x)2-4(-x)=x2+4x,又f(x)为偶函数,∴f(-x)=f(x),∴x<0时,f(x)=x2+4x,故有f(x)=再求f(x)<5的解,‎ 由得0≤x<5;‎ 由得-51,即02时,解集为{x|1};‎ 当a<0时,解集为{x|x<或x>1}.‎ ‎13.设二次函数f(x)=ax2+bx+c,函数F(x)=f(x)-x的两个零点为m,n(m0的解集;‎ ‎(2)若a>0,且00,‎ 即a(x+1)(x-2)>0.‎ 当a>0时,不等式F(x)>0的解集为{x|x<-1或x>2};‎ 当a<0时,不等式F(x)>0的解集为{x|-10,且00.‎ ‎∴f(x)-m<0,即f(x)