- 353.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
学案11 函数与方程
导学目标: 1.结合二次函数的图象,了解函数的零点与方程根的联系,会判断一元二次方程根的存在性及根的个数.2.根据具体函数的图象,能够用二分法求相应方程的近似值.
自主梳理
1.函数零点的定义
(1)对于函数y=f(x) (x∈D),把使________成立的实数x叫做函数y=f(x) (x∈D)的零点.
(2)方程f(x)=0有实根⇔函数y=f(x)的图象与____有交点⇔函数y=f(x)有________.
2.函数零点的判定
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有____________,那么函数y=f(x)在区间________内有零点,即存在c∈(a,b),使得________,这个____也就是f(x)=0的根.我们不妨把这一结论称为零点存在性定理.
3.二次函数y=ax2+bx+c (a>0)的图象与零点的关系
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c
(a>0)的图象
与x轴的交点
________,
________
________
无交点
零点个数
________
________
________
4.用二分法求函数f(x)零点近似值的步骤
第一步,确定区间[a,b],验证________________,给定精确度ε;
第二步,求区间(a,b)的中点c;
第三步,计算______:
①若________,则c就是函数的零点;
②若________,则令b=c[此时零点x0∈(a,c)];
③若________,则令a=c[此时零点x0∈(c,b)];
第四步,判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b);否则重复第二、三、四步.
自我检测
1.(2010·福建)f(x)=的零点个数为 ( )
A.0 B.1 C.2 D.3
2.若函数y=f(x)在R上递增,则函数y=f(x)的零点 ( )
A.至少有一个 B.至多有一个
C.有且只有一个 D.可能有无数个
3.如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是( )
A.①② B.①③
C.①④ D.③④
4.设f(x)=3x+3x-8,用二分法求方程3x+3x-8=0在x∈(1,2)内近似解的过程中得f(1)<0,f(1.5)>0,f(1.25)<0,则方程的根所在的区间是 ( )
A.(1,1.25) B.(1.25,1.5)
C.(1.5,2) D.不能确定
5.(2011·福州模拟)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是 ( )
A.f(x)=4x-1 B.f(x)=(x-1)2
C.f(x)=ex-1 D.f(x)=ln(x-0.5)
探究点一 函数零点的判断
例1 判断函数y=ln x+2x-6的零点个数.
变式迁移1 (2011·烟台模拟)若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则函数y=f(x)-log3|x|的零点个数是 ( )
A.多于4个 B.4个
C.3个 D.2个
探究点二 用二分法求方程的近似解
例2 求方程2x3+3x-3=0的一个近似解(精确度0.1).
变式迁移2 (2011·淮北模拟)用二分法研究函数f(x)=x3+ln的零点时,第一次经计算f(0)<0,>0,可得其中一个零点x0∈________,第二次应计算________.以上横线上应填的内容为 ( )
A. B.(0,1) f
C. D.
探究点三 利用函数的零点确定参数
例3 已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]
上有零点,求a的取值范围.
变式迁移3 若函数f(x)=4x+a·2x+a+1在(-∞,+∞)上存在零点,求实数a的取值范围.
1.全面认识深刻理解函数零点:
(1)从“数”的角度看:即是使f(x)=0的实数x;
(2)从“形”的角度看:即是函数f(x)的图象与x轴交点的横坐标;
(3)若函数f(x)的图象在x=x0处与x轴相切,则零点x0通常称为不变号零点;
(4)若函数f(x)的图象在x=x0处与x轴相交,则零点x0通常称为变号零点.
2.求函数y=f(x)的零点的方法:
(1)(代数法)求方程f(x)=0的实数根(常用公式法、因式分解法、直接求解法等);
(2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点;
(3)(二分法)主要用于求函数零点的近似值,二分法的条件f(a)·f(b)<0表明:用二分法求函数的近似零点都是指变号零点.
3.有关函数零点的重要结论:
(1)若连续不间断的函数f(x)是定义域上的单调函数,则f(x)至多有一个零点;
(2)连续不间断的函数,其相邻两个零点之间的所有函数值保持同号;
(3)连续不间断的函数图象通过零点时,函数值符号可能不变.
(满分:75分)
一、选择题(每小题5分,共25分)
1.(2010·天津)函数f(x)=2x+3x的零点所在的一个区间是 ( )
A.(-2,-1) B.(-1,0)
C.(0,1) D.(1,2)
2.(2011·福州质检)已知函数f(x)=log2x-x,若实数x0是方程f(x)=0的解,且02,x2>5
C.x1<2,x2>5
D.25
5.(2011·厦门月考)设函数f(x)=,g(x)=log2x,则函数h(x)=f(x)-g(x)的零点个数是 ( )
A.4 B.3 C.2 D.1
题号
1
2
3
4
5
答案
二、填空题(每小题4分,共12分)
6.定义在R上的奇函数f(x)满足:当x>0时,f(x)=2 006x+log2 006x,则在R上,函数f(x)零点的个数为________.
7.(2011·深圳模拟)已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x--1的零点分别为x1,x2,x3,则x1,x2,x3的大小关系是______________.
8.(2009·山东)若函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,则实数a的取值范围是________.
三、解答题(共38分)
9.(12分)已知函数f(x)=x3-x2++.
证明:存在x0∈(0,),使f(x0)=x0.
10.(12分)已知二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围.
11.(14分)(2011·杭州调研)设函数f(x)=ax2+bx+c,且f(1)=-,3a>2c>2b,求证:
(1)a>0且-3<<-;
(2)函数f(x)在区间(0,2)内至少有一个零点;
(3)设x1,x2是函数f(x)的两个零点,则≤|x1-x2|<.
答案 自主梳理
1.(1)f(x)=0 (2)x轴 零点 2.f(a)·f(b)<0 (a,b) f(c)=0 c 3.(x1,0) (x2,0) (x1,0) 两个 一个 无 4.f(a)·f(b)<0 f(c) ①f(c)=0 ②f(a)·f(c)<0 ③f(c)·f(b)<0
自我检测
1.C [当x≤0时,令x2+2x-3=0,
解得x=-3;
当x>0时,令-2+ln x=0,解得x=e2,
所以已知函数有两个零点.]
2.B 3.B 4.B 5.A
课堂活动区
例1 解题导引 判断函数零点个数最常用的方法是令f(x)=0,转化为方程根的个数,解出方程有几个根,函数y=f(x)就有几个零点,如果方程的根解不出,还有两种方法判断:方法一是基本方法,是利用零点的存在性原理,要注意参考单调性可判定零点的唯一性;方法二是数形结合法,要注意作图技巧.
解 方法一 设f(x)=ln x+2x-6,
∵y=ln x和y=2x-6均为增函数,
∴f(x)也是增函数.
又∵f(1)=0+2-6=-4<0,f(3)=ln 3>0,
∴f(x)在(1,3)上存在零点.又f(x)为增函数,
∴函数在(1,3)上存在唯一零点.
方法二 在同一坐标系画出y=ln x与y=6-2x的图象,由图可知两图象只有一个交点,故函数y=ln x+2x-6只有一个零点.
变式迁移1 B [由题意知f(x)是偶函数并且周期为2.由f(x)-log3|x|=0,得f(x)=log3|x|,令y=f(x),y=log3|x|,这两个函数都是偶函数,画两函数y轴右
边的图象如图,两函数有两个交点,因此零点个数在x≠0,x∈R的范围内共4个.]
例2 解题导引 ①用二分法求函数的零点时,最好是利用表格,将计算过程所得的各个区间、中点坐标、区间中点的函数值等置于表格中,可清楚地表示出逐步缩小零点所在区间的过程,有时也可利用数轴来表示这一过程;
②在确定方程近似解所在的区间时,转化为求方程对应函数的零点所在的区间,找出的区间[a,b]长度尽可能小,且满足f(a)·f(b)<0;
③求方程的近似解,所要求的精确度不同得到的结果也不同,精确度ε,是指在计算过程中得到某个区间(a,b)后,直到|a-b|<ε时,可停止计算,其结果可以是满足精确度的最后小区间的端点或区间内的任一实数,结果不唯一.
解 设f(x)=2x3+3x-3.
经计算,f(0)=-3<0,f(1)=2>0,
所以函数在(0,1)内存在零点,
即方程2x3+3x-3=0在(0,1)内有解.
取(0,1)的中点0.5,经计算f(0.5)<0,
又f(1)>0,所以方程2x3+3x-3=0在(0.5,1)内有解,
如此继续下去,得到方程的一个实数解所在的区间,如下表.
(a,b)
(a,b)
的中点
f
(0,1)
0.5
f(0.5)<0
(0.5,1)
0.75
f(0.75)>0
(0.5,0.75)
0.625
f(0.625)<0
(0.625,0.75)
0.687 5
f(0.687 5)<0
(0.687 5,0.75)
|0.687 5-0.75|=0.062 5<0.1
至此,可以看出方程的根落在区间长度小于0.1的区间(0.687 5,0.75)内,可以将区间端点0.687 5作为函数f(x)零点的近似值.因此0.687 5是方程2x3+3x-3=0精确度0.1的一个近似解.
变式迁移2 D [由于f(0)<0,f>0,而f(x)=x3+ln中的x3及ln在上是增函数,故f(x)在上也是增函数,
故f(x)在上存在零点,所以x0∈,
第二次计算应计算0和在数轴上对应的中点
x1==.]
例3 解 若a=0,f(x)=2x-3,显然在[-1,1]上没有零点,所以a≠0.
令Δ=4+8a(3+a)=8a2+24a+4=0,
解得a=.
①当a=时,f(x)=0的重根x=∈[-1,1],
当a=时,f(x)=0的重根x=∉[-1,1],
∴y=f(x)恰有一个零点在[-1,1]上;
②当f(-1)·f(1)=(a-1)(a-5)<0,
即11或a≤.
变式迁移3 解 方法一 (换元)
设2x=t,则函数f(x)=4x+a·2x+a+1化为g(t)=t2+at+a+1 (t∈(0,+∞)).
函数f(x)=4x+a·2x+a+1在(-∞,+∞)上存在零点,等价于方程t2+at+a+1=0,①有正实数根.
(1)当方程①有两个正实根时,
a应满足,
解得:-10,
所以f(x)在区间(-1,0)上存在零点.]
2.A
3.C [能用二分法求零点的函数必须在给定区间[a,b]上连续不断,并且有f(a)·f(b)<0.A、B中不存在f(x)<0,D中函数不连续.]
4.C
5.B [当x≤1时,函数f(x)=4x-4与g(x)=log2x的图象有两个交点,可得h(x)有两个零点,当x>1时,函数f(x)=x2-4x+3与g(x)=log2x的图象有1个交点,可得函数h(x)有1个零点,∴函数h(x)共有3个零点.]
6.3
解析 函数f(x)为R上的奇函数,因此f(0)=0,当x>0时,f(x)=2 006x+log2 006x在区间(0,)内存在一个零点,又f(x)为增函数,因此在(0,+∞)内有且仅有一个零点.根据对称性可知函数在(-∞,0)内有且仅有一解,从而函数在R上的零点的个数为3.
7.x11,所以x11
解析 设函数y=ax(a>0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a(a>0,且a≠1)有两个零点,就是函数y=ax(a>0,且a≠1)与函数y=x+a有两个交点,由图象可知当01时,因为函数y=ax(a>1)的图象过点(0,1),而直线y=x+a所过的点一定在点(0,1)的上方,所以一定有两个交点,所以实数a的取值范围是a>1.
9.证明 令g(x)=f(x)-x.………………………………………………………………(2分)
∵g(0)=,g()=f()-=-,
∴g(0)·g()<0.……………………………………………………………………………(8分)
又函数g(x)在(0,)上连续,…………………………………………………………(10分)
所以存在x0∈(0,),使g(x0)=0.
即f(x0)=x0.………………………………………………………………………………(12分)
10.解 二次函数f(x)在区间[-1,1]内至少存在一个实数c,
使f(c)>0的否定是:对于区间[-1,1]内的任意一个x都有f(x)≤0.……………………(4分)
此时,即,解得:
p≥或p≤-3.…………………………………………………………………………(10分)
∴二次函数f(x)在区间[-1,1]内至少存在一个实数c,使f(c)>0的实数p的取值范围是
-3
2c>2b,∴3a>0,2b<0, ∴a>0,b<0. 又2c=-3a-2b,由3a>2c>2b, ∴3a>-3a-2b>2b. ∵a>0,∴-3<<-.……………………………………………………………………(4分) (2)∵f(0)=c,f(2)=4a+2b+c=a-c. ①当c>0时,∵a>0, ∴f(0)=c>0且f(1)=-<0, ∴函数f(x)在区间(0,1)内至少有一个零点.……………………………………………(7分) ②当c≤0时, ∵a>0, ∴f(1)=-<0且f(2)=a-c>0, ∴函数f(x)在区间(1,2)内至少有一个零点. 综合①②得f(x)在(0,2)内至少有一个零点.……………………………………………(10分) (3)∵x1,x2是函数f(x)的两个零点,则x1,x2是方程ax2+bx+c=0的两根. ∴x1+x2=-,x1x2==--. ∴|x1-x2|= = =.(12分) ∵-3<<-, ∴≤|x1-x2|<.……………………………………………………………………(14分)