- 39.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
备课资料
一、课外阅读
算术平均数不小于几何平均数的一种证明方法(局部调整法)
(1)设a1,a2,a3,…,a n为正实数,这n个数的算术平均值记为A,几何平均值记为G,即,即A≥G,当且仅当a1=a2=…=an时,A=G.特别地当n=2时,,当n=3时,.
(2)用局部调整法证明均值不等式A≥G.设这n个正数不全相等.不失一般性,设0<a1≤a2≤…≤a n,易证a 1<A<a n,且a1<G<an.在这n个数中去掉一个最小数a1,将a 1换成A,再去掉一个最大数an,将an换成a1+an-A,其余各数不变,于是得到第二组正数:A,a2,a3,…,a n-1,a1+a n-A.这一代换具有下列性质:①两组数的算术平均值不变,设第二组数的算术平均值为A1,那么A1==A,②两组数的几何平均值最大.设第二组数的几何平均值为G1,则G1=∵A(a1+an-A)-a 1an=(A-a1)(a n-A),由a1<A<an,得(A-a1)(an-A)>0,则A(a1+an-A)>a1an.∴Aa 2a 3…a n-1(a1+a n-A)>a1a 2…an-1+a n.G1>G.若第二组数全相等,则A1=G 1,于是A=A1=G 1>G证明完毕.若第二组数不全相等,再作第二次替换.仍然是去掉第二组数中的最小数b1和最大数bn,分别用A1(即A)和b1+bn-A代替,因为有b1<A1<b n且A1=A.因而第二组数中的A不是最小数b1,也不是最大数bn,不在去掉之列,在替换中不会被换掉,而只会再增加,如此替换下去,每替换一次,新数中至少增加一个A,经过n-2次替换,新数中至少出现n-2个A,最多经过n-1次替换,得到一个全部是A的新数组.此时新数组的算术平均值等于几何平均值.在每次替换中,数组的算术平均值不变,始终等于A,而几何平均值不断增大,即G<G 1<G2<…<G k,而Gk=Ak=A,因而G≤A成立.
二、课外拓展
平均值不等式:平均不等式是最重要而基本的不等式之一,应用极其广泛,如能灵活运用,将产生意想不到的效果,这类试题在数学竞赛中经常出现.请同学们课后查找资料,阅读此四个不等式的证明过程.
平均值定理:设n个正数a1,a2,…,an,记
调和平均
几何平均,
算术平均,
平方平均.
这4个平均有如下关系:Hn≤Gn≤An≤Q n,等号成立的充要条件都是a1=a 2=…=a n.
相关文档
- 高中数学必修5教案:3_3一元二次不等2021-06-1613页
- 高中数学必修5教案:第一章 解三角形2021-06-1619页
- 高中数学必修5教案:3_3-4简单的线性2021-06-162页
- 高中数学必修5教案:1_1_1正弦定理2021-06-154页
- 高中数学必修5教案:3_3-3简单的线性2021-06-152页
- 高中数学必修5教案:2_1数列的概念2021-06-1519页
- 高中数学必修5教案:2_2等差数列2021-06-158页
- 高中数学必修5教案:2_3等差数列的前2021-06-1514页
- 高中数学必修5教案:2_22021-06-116页
- 高中数学必修5教案:2_4等比数例2021-06-1120页