• 2.88 MB
  • 2021-06-16 发布

高考数学一轮复习核心素养测评三十九8-4数列的求和文含解析北师大版

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
核心素养测评三十九 数列的求和 ‎(30分钟 60分)‎ 一、选择题(每小题5分,共25分)‎ ‎1.数列{an}的通项公式是an=,若前n项和为10,则项数n为 (  )‎ A.120 B‎.99 ‎ C.11  D.121‎ ‎【解析】选A.an=‎ ‎=‎ ‎=-,‎ 所以a1+a2+…+an ‎=(-1)+(-)+…+(-)‎ ‎=-1=10.‎ 即=11,所以n+1=121,n=120.‎ ‎2.已知数列{an}的通项公式是an=2n-3,则其前20项和为 (  )‎ A.380- B.400-‎ C.420- D.440-‎ ‎【解析】选C.令数列{an}的前n项和为Sn,‎ 则S20=a1+a2+…+a20‎ ‎=2(1+2+…+20)-3‎ ‎=2×-3×‎ ‎=420-.‎ ‎3.已知等比数列{an},a1=1,a4=,且a‎1a2+a‎2a3+…+anan+10. 世纪金榜导学号 ‎(1)求数列的通项公式.‎ ‎(2)若bn=,求数列的前n项和Tn.‎ ‎【解析】(1)当n=1时,2S1==‎2a1,‎ 因为a1>0,所以a1=2,‎ 当n≥2时,2an=2=-,‎ 所以=0,‎ 因为an>0,所以an-an-1-1=0,‎ 所以an-an-1=1,‎ 所以是以a1=2为首项,d=1为公差的等差数列,所以an=n+1.‎ ‎(2)由(1)得an=n+1,所以bn==-,‎ 所以Tn=b1+b2+…+bn-1+bn=++…++‎ ‎=-3.‎ ‎10.已知数列{an}的各项均为正数,且-2nan-(2n+1)=0,n∈N*. 世纪金榜导学号 ‎(1)求数列{an}的通项公式.‎ ‎(2)若bn=2n·an,求数列{bn}的前n项和Tn.‎ ‎【解析】(1)由-2nan-(2n+1)=0得[an-(2n+1)]·(an+1)=0,所以an=2n+1或an=-1,又数列{an}的各项均为正数,负值应舍去,‎ 所以an=2n+1,n∈N*.‎ ‎(2)因为bn=2n·an=2n·(2n+1),‎ 所以Tn=2×3+22×5+23×7+…+2n×(2n+1),①‎ ‎2Tn=22×3+23×5+…+2n×(2n-1)+2n+1×(2n+1),②‎ 由①-②得-Tn=6+2×(22+23+…+2n)-2n+1×(2n+1)=6+2×-2n+1×(2n+1)‎ ‎=-2+2n+1(1-2n).‎ 所以Tn=(2n-1)·2n+1+2.‎ ‎(15分钟 35分)‎ ‎1.(5分)若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+a3+…+a10= (  )‎ A.15   B‎.12 ‎  C.-12   D.-15‎ ‎【解析】选A.因为an=(-1)n(3n-2),所以a1+a2+…+a10=-1+4-7+10-13+16-19+22-25+28=(-1+4)+(-7+10)+(-13+16)+(-19+22)+(-25+28)=3×5=15.‎ ‎ 【变式备选】已知数列{an}的前n项和为Sn,通项公式an=n·(-1)n+1,则S17= (  )‎ A.10   B‎.9 ‎  C.8   D.7‎ ‎【解析】选B.S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.‎ ‎【一题多解】解决本题还可以采用以下方法:‎ 选B.S17=1-2+3-4+5-6+…+15-16+17=(1+3+…+17)-(2+4+…+16)=81-72=9.‎ ‎2.(5分)已知等比数列{an}的首项为,公比为-,其前n项和为Sn,则Sn的最大值为 (  )‎ A.   B.   C.   D.‎ ‎【解析】选D.因为等比数列{an}的首项为,公比为-,所以Sn==1-,‎ 当n取偶数时,Sn=1-<1;‎ 当n取奇数时,Sn=1+≤1+=.‎ 所以Sn的最大值为.‎ ‎ 【变式备选】‎ ‎   已知数列{an}满足an+1=+,且a1=,则该数列的前20项的和等于    . ‎ ‎【解析】因为a1=,又an+1=+,‎ 所以a2=1,从而a3=,a4=1,‎ 即得an=‎ 故数列的前20项的和等于S20=10×=15.‎ 答案:15‎ ‎3.(5分)3×2-1+4×2-2+5×2-3+…+(n+2)·2-n=    . ‎ ‎【解析】设Sn=3×2-1+4×2-2+5×2-3+…+‎ ‎(n+2)·2-n,‎ Sn=3×2-2+4×2-3+5×2-4+…+(n+2)·2-(n+1),‎ 则Sn=3×2-1+2-2+2-3+…+2-n-(n+2)·2-(n+1)‎ ‎=1+-(n+2)·2-n-1‎ ‎=2--(n+2)·2-n-1,‎ Sn=4--,Sn=4-.‎ 答案:4-‎ ‎4.(10分)已知等差数列{an}的公差为d,且方程a1x2-dx-3=0的两个根分别为-1,3.‎ ‎(1)求数列{an}的通项公式.‎ ‎(2)若bn=+2an,求数列{bn}的前n项和Sn.‎ ‎【解析】(1)由题知,解得 故数列{an}的通项公式为an=a1+(n-1)d=1+(n-1)×2=2n-1.‎ ‎(2)由(1)知bn=+2an=22n-1+2(2n-1)=+4n-2,‎ 则Sn=×(4+42+43+…+4n)+(2+6+10+…+4n-2)=×+‎ ‎=+2n2-.‎ ‎ 【变式备选】‎ ‎   已知数列{an}的前n项和为Sn,满足a1=2,an+1=2Sn+2.‎ ‎(1)求数列{an}的通项公式.‎ ‎(2)若数列{bn}满足:bn=an+log3an,求数列{bn}的前2n项和S2n.‎ ‎【解析】(1)因为an+1=2Sn+2,①‎ 所以当n≥2时, an=2Sn-1+2,②‎ ‎①-②得:an+1-an=2an ‎⇒an+1=3an,又a1=2,由①得 a2=‎2a1+2=6,所以a2=‎3a1,‎ 所以{an}是以2为首项,3为公比的等比数列,‎ 所以an=2×3n-1.‎ ‎(2)因为bn=an+(-1)nlog3an ‎=2×3n-1+(-1)nlog3(2×3n-1)‎ ‎=2×3n-1+(-1)n[log32+(n-1)log33]‎ ‎=2×3n-1+(-1)n(-1+log32)+(-1)nn 所以S2n=b1+b2+…+b2n ‎=2(1+3+32+…+32n-1)+0+n ‎=32n+n-1.‎ ‎5.(10分)已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4‎-2a1,S11=11b4.世纪金榜导学号 ‎(1)求{an}和{bn}的通项公式.‎ ‎(2)求数列{a2nbn}的前n项和(n∈N*).‎ ‎【解析】(1)因为b2+b3=12,且b1=2,‎ 所以q2+q-6=0.又因为q>0,解得q=2,所以bn=2n.设等差数列{an}的公差为d,‎ 由b3=a4‎-2a1可得3d-a1=8,①‎ 由S11=11b4可得a1+5d=16,②‎ 联立①②解得a1=1,d=3,由此可得an=3n-2.‎ 所以{an}的通项公式为an=3n-2,{bn}的通项公式为bn=2n.‎ ‎(2)设数列{a2nbn}的前n项和为Tn,由a2n=6n-2得 Tn=4×2+10×22+16×23+…+(6n-2)×2n,‎ ‎2Tn=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,‎ 上述两式相减得:‎ ‎-Tn=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=-4-(6n-2)×2n+1=-(3n-4)2n+2-16.‎ 所以Tn=(3n-4)2n+2+16.‎ 所以数列{a2nbn}的前n项和为(3n-4)2n+2+16.‎ ‎1.已知数列中,a1=2,点在函数f=x2+2x的图像上,其中n=1,2,3,….若bn=+,数列的前n项和为Sn,则S2 020+= 世纪金榜导学号(  )‎ A.2 020 B‎.20 ‎C.2 D.1‎ ‎【解析】选D.因为点在函数f=x2+2x的图像上,所以an+1=+2an,所以=,所以bn=-,所以Sn=b1+b2+…+bn=-+-+…+-=-,所以Sn+==1,则S2 020+=1.‎ ‎2.已知正项数列{an}中,a1=1,a2=2,2=+(n≥2),bn=,数列{bn}的前n项和为Sn,则S33的值是    . 世纪金榜导学号 ‎ ‎【解析】因为2=+(n≥2),‎ 所以数列{}是首项为1,公差为22-1=3的等差数列,所以=1+3(n-1)=3n-2.‎ 所以an=,所以bn=‎ ‎==(-),‎ 所以数列{bn}的前n项和Sn=[(-1)+(-)+…+(-)]=(-1).‎ 则S33=(10-1)=3.‎ 答案:3‎