• 2.12 MB
  • 2021-06-16 发布

上海市南汇中学2019-2020学年高一上学期十月考试数学试题

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
www.ks5u.com 上海南汇中学2019学年第一学期10月考试 高一数学 一、填空题(每小题3分,共12题,共36分)‎ ‎1.设集合,集合,若,则__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 由题意得出,由此可解出实数的值.‎ ‎【详解】,且,,,,解得.‎ 故答案为:.‎ ‎【点睛】本题考查利用集合的包含关系求参数,在处理有限集的问题时,还应注意集合的元素应满足互异性,考查计算能力,属于中等题.‎ ‎2.用描述法表示所有被除余整数组成的集合:_________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 利用描述法和整除性质即可得出.‎ ‎【详解】由题意知,所有被除余的整数组成的集合为.‎ 故答案:.‎ ‎【点睛】本题考查描述法、数的整除性质,考查推理能力,属于基础题.‎ ‎3.设集合,,则__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 解方程组,求出公共解,即可得出集合.‎ ‎【详解】解方程组,得,因此,.‎ 故答案为:.‎ ‎【点睛】本题考查集合交集的计算,同时也考查了二元一次方程组的求解,在表示集合时要注意集合元素的类型,考查计算能力,属于基础题.‎ ‎4.不等式的解集是_________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 将原不等式变形为,解出该不等式即可.‎ 详解】由,移项得,即,解得或.‎ 因此,不等式的解集是.‎ 故答案为:.‎ ‎【点睛】本题考查分式不等式的求解,考查运算求解能力,属于基础题.‎ ‎5.已知关于的不等式的解集为,则不等式的解集为__________.‎ ‎【答案】‎ ‎【解析】‎ 分析:不等式的解集为,则方程的根为,利用韦达定理求参数,再解不等式即可。‎ 详解:不等式的解集为,则方程的根为,由韦达定理可知:,,所以不等式 为,所以解集为 点睛:二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式 问题的常用方法。 ‎ ‎6.设、,集合,则__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 根据题意得出,则,则有,可得出,由此得出,然后求出实数、的值,于是可得出的值.‎ ‎【详解】,由于有意义,则,则有,所以,.‎ 根据题意有,解得,因此,.‎ 故答案为:.‎ ‎【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.‎ ‎7.设全集,若,,,则__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 作出韦恩图,将全集中的各元素放置在合适的区域内,得出集合和集合,再根据交集的定义可得出集合.‎ ‎【详解】全集,作出韦恩图如下图所示:‎ 由图形可知集合,,因此,.‎ 故答案为:.‎ ‎【点睛】本题考查集合的混合运算,同时也考查了韦恩图法的应用,考查数形结合思想的应用,属于中等题.‎ ‎8.下列说法中:‎ ‎①“若,则”的否命题是“若,则”;‎ ‎②“”是“”的必要非充分条件;‎ ‎③“”是“或”的充分非必要条件;‎ ‎④“”是“且”的充要条件.‎ 其中正确的序号为__________.‎ ‎【答案】③‎ ‎【解析】‎ ‎【分析】‎ 根据否命题与原命题的关系可判断命题①的正误;解方程,根据充分必要性可判断出命题②的正误;由命题“若,则或”的逆否命题为“若且,则”得出“”是“或”的充分必要性与“且”是“”的充分必要性相同,从而判断命题③的正误;利用举反例和逻辑推理来判断命题④的正误.‎ ‎【详解】对于命题①,“若,则”的否命题是“若,则”,命题①错误;‎ 对于命题②,解方程,得或,‎ 所以,“”是“”的充分非必要条件,命题②错误;‎ 对于命题③,由于命题“若,则或”的逆否命题为“若且,则”,可知,“”是“或”的充分必要性与“且”是“”的充分必要性相同,‎ ‎“且”“”,取,则,所以,“”“且”,则“且”是“”的充分非必要条件,‎ 所以,“”是“或”的充分非必要条件,命题③正确;‎ 对于命题④,取,,则满足,但“”“且”,‎ 由不等式性质可知,当且,有,则“且”“”.‎ 所以,“”“且”必要非充分条件,命题④错误.‎ 故答案为:③.‎ ‎【点睛】本题考查四种命题以及充分必要性的判断,常利用举反例和逻辑推理进行推导,考查推理论证能力,属于中等题.‎ ‎9.已知集合,则m的取值范围为______.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 当时,不等式恒成立,可知符合题意;当时,由恒成立可得;当时,不可能在实数集上恒成立,由此可得结果.‎ ‎【详解】当时,恒成立,,符合题意 当时,,解得:‎ 当时,集合不可能为 综上所述:‎ 故答案为:‎ ‎【点睛】本题考查一元二次不等式在实数集上恒成立问题的求解,易错点是忽略二次项系数是否为零的讨论,造成求解错误.‎ ‎10.已知集合,,且,则实数的值为_________.‎ ‎【答案】或或1‎ ‎【解析】‎ ‎【分析】‎ 解方程得,因为,所以,,,分别解得的值 ‎【详解】由题,,因为,所以当时,无解,;当时,;当时,,综上所述,的值为或或 ‎【点睛】由集合间的关系求参数时,常根据集合包含关系的意义,建立方程求解,此时应注意分类讨论思想的运用 ‎11.集合,若,则实数的取值范围是__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 由,结合题意得出关于的方程有负根,分和,在的前提下,分二次方程有两个相等的负根、两根一正一负以及两个负根进行分类讨论,可求出实数的取值范围.‎ ‎【详解】,,‎ ‎,则关于的方程有负根.‎ ‎(1)当时,即当时,原方程为,不成立;‎ ‎(2)当时,即当时,设该方程的两个实根分别为、.‎ ‎①若该方程有两个相等的负根,则,‎ 可得,此时方程为,即为,解得,‎ 合乎题意;‎ ‎②若该方程两根一正一负时,则有,解得;‎ ‎③当该方程有两个负根时,则有,解得.‎ 综上所述,实数的取值范围是.‎ 故答案为:.‎ ‎【点睛】本题考查二次方程根的分布问题,解题时要结合判别式、两根之和与积的符号来进行分析,考查分类讨论思想的应用,属于中等题.‎ ‎12.若集合,集合,且,记为中元素的最大值与最小值之和,则对所有的,的平均值是__________.‎ ‎【答案】‎ ‎【解析】‎ ‎【分析】‎ 先归纳出集合时,集合且时,的平均值,然后令可得出的平均值.‎ ‎【详解】先考虑集合时,集合且时,的平均值.‎ ‎,,则,此时,的平均值为;‎ ‎,当时,,当时,,当时,,此时,的平均值为;‎ ‎,当时,,当时,,时,,当时,,当时,,当时,,当时,,此时,的平均值为;‎ 依此类推,对于集合,的平均值为.‎ 由于,所以,.‎ 故答案为:.‎ ‎【点睛】本题考查了集合的新定义,同时也考查了归纳推理,解题的关键就是利用归纳推理得出的表达式,考查推理论证能力,属于难题.‎ 二、选择题(每小题3分,共4题,共12分)‎ ‎13.下列四个命题中,为真命题的是( )‎ A. 若,则 B. 若,则 C. 若,则 D. 若,则 ‎【答案】A ‎【解析】‎ ‎【分析】‎ 利用不等式的性质依次判断即可.‎ ‎【详解】对于选项A,由及“同向同正可乘性”,可得;对于选项B,令则,显然不成立;对于选项C,若,显然不成立;对于选项D,若,显然不成立.‎ 故选:A ‎【点睛】本题主要考查不等式的性质,属于基础题.‎ ‎14. 钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的()‎ A. 充分条件 B. 必要条件 C. 充分必要条件 D. 既非充分也非必要条件 ‎【答案】B ‎【解析】‎ 根据等价命题,便宜Þ没好货,等价于,好货Þ不便宜,故选B.‎ ‎【考点定位】考查充分必要性的判断以及逻辑思维能力,属中档题。‎ ‎15.设、是非空集合,定义且,若,,则等于( )‎ A. B. ‎ C. D. ‎ ‎【答案】A ‎【解析】‎ ‎【分析】‎ 解出集合,利用交集和补集的定义得出集合和,然后利用题中的定义可得出集合.‎ ‎【详解】解不等式,即,解得,则集合.‎ 所以,,,‎ 根据集合的定义可得.‎ 故选:A.‎ ‎【点睛】本题考查集合的新定义运算,同时也考查了一元二次不等式的解法、交集与补集的运算,考查运算求解能力,属于中等题.‎ ‎16.设集合,,,,,其中、,下列说法正确的是( )‎ A. 对任意,是的子集;对任意,不是的子集 B. 对任意,是的子集;存在,使得是的子集 C. 存在,使得是的子集;对任意,不是的子集 D. 存在,使得是的子集;存在,使得是的子集 ‎【答案】B ‎【解析】‎ ‎【分析】‎ 利用集合子集的概念,任取,可推出,可得对任意的实数,;再由,,求得、,即可判断出选项B正确,A、C、D错误.‎ ‎【详解】对于集合,,任取,,则,,所以,对任意,是的子集;‎ 当时,,,可得;‎ 当时,,,可得不是的子集.‎ 所以,存在,使得是的子集.‎ 故选:B.‎ ‎【点睛】本题考查集合包含关系的判断,同时也考查了一元二次不等式的解法,以及任意性和存在性问题的解法,考查推理能力,属于中等题.‎ 三、解答题。‎ ‎17.已知集合,,若,求的值.‎ ‎【答案】、或 ‎【解析】‎ ‎【分析】‎ 解出集合,由得出,然后分和两种情况讨论,在时,可得出或,由此可得出实数的值.‎ ‎【详解】解方程,解得或,则集合.‎ ‎,则.‎ 当时,,合乎题意;‎ 当时,,,或,解得或.‎ 因此,实数的取值有、或.‎ ‎【点睛】本题考查利用集合的包含关系求出参数,同时也考查了一元二次方程的求解,解题的关键就是对变系数的一次方程进行分类讨论,考查运算求解能力,属于中等题.‎ ‎18.设、且,比较两数与的大小.‎ ‎【答案】见解析 ‎【解析】‎ ‎【分析】‎ 将两个代数式作差,因式分解,然后对各因式的符号进行判断,可得出两数与的大小关系.‎ ‎【详解】.‎ ‎,.‎ ‎①当时,,此时,;‎ ‎②当时,,此时,;‎ ‎③当时,,此时,.‎ ‎【点睛】本题考查利用作差法比较两数的大小,在作差后依次因式分解、讨论符号,然后可判断出两数的大小关系,考查分析问题和解决问题的能力,属于中等题.‎ ‎19.已知集合,集合,,.‎ 求:(1);‎ ‎(2).‎ ‎【答案】(1);(2).‎ ‎【解析】‎ ‎【分析】‎ ‎(1)求出集合、,利用交集的定义可得出集合;‎ ‎(2)求出集合,利用并集的定义得出集合,再利用补集的定义可得出集合.‎ ‎【详解】(1),‎ ‎,因此,;‎ ‎(2),由不等式的性质可得,‎ 则集合,,‎ 因此,.‎ ‎【点睛】本题考查集合交集、并集与补集的混合运算,同时也考查了函数定义域、值域的求解,考查运算求解能力,属于中等题.‎ ‎20.若关于的不等式的解集为,的解集为.‎ ‎(1)试求和;‎ ‎(2)是否存在实数,使得?若存在,求的范围;若不存在,说明理由.‎ ‎【答案】(1),;(2)存在,.‎ ‎【解析】‎ ‎【分析】‎ ‎(1)将不等式变形为,然后对和的大小进行分类讨论,解出该不等式可得出集合,将不等式变形为,解出该不等式可得出集合;‎ ‎(2)对和的大小进行分类讨论,结合列出关于的不等式,解出即可得出实数的取值范围.‎ ‎【详解】(1)不等式即为.‎ ‎①当时,原不等式即为,解该不等式得,‎ 此时;‎ ‎②当时,解该不等式得或,此时;‎ ‎③当时,解该不等式得或,此时.‎ 不等式即为,解得,此时,;‎ ‎(2)当时,,,此时成立;‎ 当时,,,要使得,则有,解得,此时;‎ 当时,,,则,要使得,则,这与矛盾.‎ 综上所述,实数的取值范围是.‎ 因此,存在实数,使得.‎ ‎【点睛】本题考查一元二次不等式与分式不等式的求解,同时也考查了利用集合的并集运算求参数,解题时要注意对参数的取值进行分类讨论,考查分类讨论思想的应用,属于中等题.‎ ‎21.对在直角坐标系的第一象限内的任意两点,作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.‎ ‎(1)试写出点的一个“上位点”坐标和一个“下位点”坐标;‎ ‎(2)设、、、均为正数,且点是点的上位点,请判断点是否既是点的“下位点”又是点的“上位点”,如果是请证明,如果不是请说明理由;‎ ‎(3)设正整数满足以下条件:对任意实数,总存在,使得点既是点的“下位点”,又是点的“上位点”,求正整数的最小值.‎ ‎【答案】(1)“上位点”,“下位点”;(2)是,证明见解析;(3).‎ ‎【解析】‎ 分析】‎ ‎(1)由已知中“上位点”和“下位点”的定义,可得出点的一个“上位点”的坐标为,一个“下位点”的坐标为;‎ ‎(2)由点是点的“上位点”得出,然后利用作差法得出与、的大小关系,结合“下位点”和“上位点”的定义可得出结论;‎ ‎(3)结合(2)中的结论,可得,,满足条件,再说明当时,不成立,可得出的最小值为.‎ ‎【详解】(1)对于平面直角坐标系的第一象限内的任意两点作如下定义:,那么称点是点的“上位点”,同时点是点的“下位点”.‎ 点的一个“上位点”的坐标为,一个“下位点”的坐标为;‎ ‎(2)点是点的“上位点”,,.‎ ‎,‎ 点是点的“下位点”,‎ ‎,‎ 点是点的“上位点”;‎ ‎(3)若正整数满足条件:在时恒成立.‎ 由(2)中的结论可知,,时满足条件.‎ 若,由于,‎ 则不成立.‎ 因此,的最小值为.‎ ‎【点睛】本题考查的知识点是新定义“上位点”和“下位点”,同时也考查了利用作差法比较两数的大小关系,解题的关键就是对题中新定义的理解,考查分析问题和解决问题的能力,属于难题.‎ ‎ ‎