• 984.50 KB
  • 2021-06-16 发布

【数学】2019届一轮复习北师大版第十一章计数原理、概率、随机变量及其分布列学案

  • 41页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
第十一章概 率 第一节 随机事件的概率 本节主要包括2个知识点: 1.随机事件的频率与概率;2.互斥事件与对立事件.‎ 突破点(一) 随机事件的频率与概率 ‎ ‎1.事件的分类 ‎2.频率和概率 ‎(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.‎ ‎(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.‎ ‎1.判断题 ‎(1)“下周六会下雨”是随机事件.(  )‎ ‎(2)事件发生的频率与概率是相同的.(  )‎ ‎(3)随机事件和随机试验是一回事.(  )‎ ‎(4)在大量重复试验中,概率是频率的稳定值.(  )‎ 答案:(1)√ (2)× (3)× (4)√‎ ‎2.填空题 ‎(1)掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则P(M)=________;P(N)=________.‎ 解析:掷一枚硬币两次,有四个基本事件:正反、正正、反正、反反.故P(M)==,P(N)=.‎ 答案:  ‎(2)在n次重复进行的试验中,事件A发生的频率为,当n很大时,P(A)与的关系是________.(填“等于”或“约等于”)‎ 解析:因频率是概率的近似值,概率是频率的稳定值,所以P(A)≈.‎ 答案:约等于 ‎(3)给出下列三个说法,其中正确的有________个.‎ ‎①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;‎ ‎②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是;‎ ‎③随机事件发生的频率就是这个随机事件发生的概率.‎ 解析:①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念.‎ 答案:0‎ ‎(4)某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为________;中10环的概率约为________.‎ 解析:中靶的频数为9,试验次数为10,所以中靶的频率为=0.9,所以此人射击1次,中靶的概率约为0.9.同理得中10环的概率约为0.2.‎ 答案:0.9 0.2‎ 随机事件的频率与概率 事件A发生的频率是利用频数nA除以试验总次数n所得到的值,且随着试验次数的增多,它在A的概率附近摆动幅度越来越小,即概率是频率的稳定值,因此在试验次数足够的情况下,给出不同事件发生的次数,可以利用频率来估计相应事件发生的概率.‎ ‎[典例] 某保险公司利用简单随机抽样的方法,对投保的车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:‎ 赔偿金额(元)‎ ‎0‎ ‎1 000‎ ‎2 000‎ ‎3 000‎ ‎4 000‎ 车辆数(辆)‎ ‎500‎ ‎130‎ ‎100‎ ‎150‎ ‎120‎ ‎(1)若每辆车的投保金额为2 800元,估计赔付金额大于投保金额的概率.‎ ‎(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.‎ ‎[解] (1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)==0.15,P(B)==0.12,‎ 由于投保额为2 800元,赔付金额大于投保金额的情形是赔付3 000元和4 000元,‎ 所以其概率为P(A)+P(B)=0.15+0.12=0.27.‎ ‎(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主是新司机的有0.1×1 000=100(位),而赔付金额为4 000元的车辆中车主为新司机的有0.2×120=24(位),‎ 所以样本车辆中新司机车主获赔金额为4 000元的频率为=0.24,‎ 由频率估计概率得P(C)=0.24.‎ ‎1.某电子商务公司随机抽取1 000名网络购物者进行调查.这1 000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:‎ 电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:‎ 购物金额分组 ‎[0.3,0.5)‎ ‎[0.5,0.6)‎ ‎[0.6,0.8)‎ ‎[0.8,0.9]‎ 发放金额 ‎50‎ ‎100‎ ‎150‎ ‎200‎ ‎(1)求这1 000名购物者获得优惠券金额的平均数;‎ ‎(2)以这1 000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.‎ 解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:‎ x ‎0.3≤x<0.5‎ ‎0.5≤x<0.6‎ ‎0.6≤x<0.8‎ ‎0.8≤x≤0.9‎ y ‎50‎ ‎100‎ ‎150‎ ‎200‎ 频率 ‎0.4‎ ‎0.3‎ ‎0.28‎ ‎0.02‎ 这1 000名购物者获得优惠券金额的平均数为:‎ =96.(2)由获得优惠券金额y与购物金额x的对应关系,由(1)有P(y=150)=P(0.6≤x<0.8)=0.28,‎ P(y=200)=P(0.8≤x≤0.9)=0.02,‎ 从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.‎ ‎2.随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:‎ 日期 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ ‎11‎ ‎12‎ ‎13‎ ‎14‎ ‎15‎ 天气 晴 雨 阴 阴 阴 雨 阴 晴 晴 晴 阴 晴 晴 晴 晴 日期 ‎16‎ ‎17‎ ‎18‎ ‎19‎ ‎20‎ ‎21‎ ‎22‎ ‎23‎ ‎24‎ ‎25‎ ‎26‎ ‎27‎ ‎28‎ ‎29‎ ‎30‎ 天气 晴 阴 雨 阴 阴 晴 阴 晴 晴 晴 阴 晴 晴 晴 雨 ‎(1)在4月份任选一天,估计西安市在该天不下雨的概率;‎ ‎(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.‎ 解:(1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,以频率估计概率,在4月份任选一天,西安市不下雨的概率为=.‎ ‎(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为=.以频率估计概率,运动会期间不下雨的概率为.‎ 突破点(二) 互斥事件与对立事件  ‎ ‎1.概率的基本性质 ‎(1)概率的取值范围:0≤P(A)≤1.‎ ‎(2)必然事件的概率:P(A)=1.不可能事件的概率:P(A)=0.‎ ‎2.互斥事件和对立事件 事件 定义 概率公式 互斥 事件 在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件 P(A∪B)=P(A)+P(B);‎ P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)‎ 对立 事件 在一个随机试验中,两个试验不会同时发生,并且一定有一个发生的事件A和称为对立事件 P()=1-P(A)‎ ‎1.判断题 ‎(1)若随机事件A发生的概率为P(A),则0≤P(A)≤1.(  )‎ ‎(2)两个事件的和事件是指两个事件同时发生.(  )‎ ‎(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.(  )‎ ‎(4)“方程x2+2x+8=0有两个实根”是不可能事件.(  )‎ 答案:(1)× (2)× (3)√ (4)√‎ ‎2.填空题 ‎(1)一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是____________.‎ 答案:两次都不中靶 ‎(2)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为________.‎ 答案:②‎ ‎(3)甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么甲是乙的____________条件.‎ 答案:必要不充分 ‎(4)从一箱产品中随机抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为________.‎ 解析:由对立事件可得P=1-P(A)=0.35.‎ 答案:0.35‎ 事件关系的判断 ‎[例1] (1)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的(  )‎ A.充分不必要条件    B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎(2)一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示“向上的一面出现奇数”,事件B表示“向上的一面出现的数字不超过3”,事件C表示“向上的一面出现的数字不小于4”,则(  )‎ A.A与B是互斥而非对立事件 B.A与B是对立事件 C.B与C是互斥而非对立事件 D.B与C是对立事件 ‎(3)对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.‎ ‎[解析] (1)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B)=1,充分性成立.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件,必要性不成立.故甲是乙的充分不必要条件.‎ ‎(2)A∩B={出现数字1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.故选D.‎ ‎(3)设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅,故A与B,A与C,B与C,B与D为互斥事件.而B∩D=∅,B∪D=I,故B与D互为对立事件.‎ ‎[答案] (1)A (2)D ‎(3)A与B,A与C,B与C,B与D B与D ‎[方法技巧]‎ 事件间的关系的判断方法 ‎(1)判断事件间的关系时,可把所有的试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件间的关系.‎ ‎(2)对立事件一定是互斥事件,也就是说不互斥的两个事件一定不是对立事件,在确定了两个事件互斥的情况下,就要看这两个事件的和事件是不是必然事件,这是判断两个事件是否为对立事件的基本方法.判断互斥事件、对立事件时,注意事件的发生与否都是对于同一次试验而言的,不能在多次试验中判断.‎ ‎(3)从集合的角度上看:事件A,B对应的基本事件构成了集合A,B,则A,B互斥时,A∩B=∅;A,B对立时,A∩B=∅且A∪B=U(U为全集).两事件互斥是两事件对立的必要不充分条件.  ‎ 互斥事件、对立事件的概率 ‎[例2] 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄球和绿球的概率各是多少?‎ ‎[解] 从袋中任取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则有 P(A)=,P(B∪C)=P(B)+P(C)=,‎ P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=,解得P(B)=,P(C)=,P(D)=,因此得到黑球、黄球、绿球的概率分别是,,.‎ ‎[方法技巧]‎ 求复杂互斥事件概率的两种方法 ‎(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和;‎ ‎(2)间接法:先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.  ‎ ‎1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是(  )‎ A.对立事件 B.不可能事件 C.互斥事件但不是对立事件 D.以上答案都不对 解析:选C 由互斥事件和对立事件的概念可判断,应选C.‎ ‎2.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为(  )‎ A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件 解析:选B 因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.故选B.‎ ‎3.由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:‎ 排队人数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5人及以上 概率 ‎0.11‎ ‎0.16‎ ‎0.3‎ ‎0.29‎ ‎0.1‎ ‎0.04‎ 则至多2人排队的概率为(  )‎ A.0.3 B.0.43‎ C.0.57 D.0.27‎ 解析:选C 记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A、B、C彼此互斥.记“至多2人排队”为事件E.则P(E)=P(A+B+C)=P(A)+P(B)+P(C)=0.11+0.16+0.3=0.57.‎ ‎4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是(  )‎ A. B. ‎ C. D.1‎ 解析:选C 设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则C=A∪B,且事件A与B互斥.所以P(C)=P(A)+P(B)=+=.即任意取出2粒恰好是同一色的概率为.‎ ‎5.某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:‎ ‎(1)P(A),P(B),P(C);‎ ‎(2)1张奖券的中奖概率;‎ ‎(3)1张奖券不中特等奖且不中一等奖的概率.‎ 解:(1)P(A)=,P(B)==,P(C)==.故事件A,B,C的概率分别为,‎ ,.‎ ‎(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.‎ ‎∵A,B,C两两互斥,‎ ‎∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)‎ ‎==,‎ 故1张奖券的中奖概率约为.‎ ‎(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,‎ ‎∴P(N)=1-P(A∪B)=1-=,‎ 故1张奖券不中特等奖且不中一等奖的概率为. ‎ ‎   [全国卷5年真题集中演练——明规律]                ‎ ‎1.(2015·全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.‎ B地区用户满意度评分的频数分布表 满意度评分分组 ‎[50,60)‎ ‎[60,70)‎ ‎[70,80)‎ ‎[80,90)‎ ‎[90,100]‎ 频数 ‎2‎ ‎8‎ ‎14‎ ‎10‎ ‎6‎ ‎(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).‎ ‎(2)根据用户满意度评分,将用户的满意度分为三个等级:‎ 满意度评分 低于70分 ‎70分到89分 不低于90分 满意度等级 不满意 满意 非常满意 估计哪个地区用户的满意度等级为不满意的概率大?说明理由.‎ 解:(1)如图所示.‎ 通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.‎ ‎(2)A地区用户的满意度等级为不满意的概率大.‎ 记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(CA)的估计值为(0.01+0.02+0.03)×10=0.6,P(CB)的估计值为(0.005+0.02)×10=0.25.‎ 所以A地区用户的满意度等级为不满意的概率大.‎ ‎2.(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:‎ 最高气温 ‎[10,15)‎ ‎[15,20)‎ ‎[20,25)‎ ‎[25,30)‎ ‎[30,35)‎ ‎[35,40)‎ 天数 ‎2‎ ‎16‎ ‎36‎ ‎25‎ ‎7‎ ‎4‎ 以最高气温位于各区间的频率估计最高气温位于该区间的概率.‎ ‎(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;‎ ‎(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.‎ 解:(1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.‎ ‎(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y=6×450-4×450=900;‎ 若最高气温位于区间[20,25),‎ 则Y=6×300+2(450-300)-4×450=300;‎ 若最高气温低于20,‎ 则Y=6×200+2(450-200)-4×450=-100.‎ 所以Y的所有可能值为900,300,-100.‎ Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8.‎ ‎ [课时达标检测] ‎ ‎ [小题对点练——点点落实]‎ 对点练(一) 随机事件的频率与概率 ‎1.容量为20的样本数据,分组后的频数如下表:‎ 分组 ‎[10,20)‎ ‎[20,30)‎ ‎[30,40)‎ ‎[40,50)‎ ‎[50,60)‎ ‎[60,70)‎ 频数 ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎4‎ ‎2‎ 则样本数据落在区间[10,40)的频率为(  )‎ A.0.35 B.0.45 ‎ C.0.55 D.0.65‎ 解析:选B 数据落在[10,40)的频率为==0.45,故选B.‎ ‎2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(  )‎ A.134石 B.169石 C.338石 D.1 365石 解析:选B 这批米内夹谷约为×1 534≈169石,故选B .‎ ‎3.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:‎ ‎162,153,148,154,165,168,172,171,173,150,‎ ‎151,152,160,165,164,179,149,158,159,175.‎ 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5 cm~170.5 cm 之间的概率约为(  )‎ A. B. C. D. 解析:选A 从已知数据可以看出,在随机抽取的这20位学生中,身高在155.5 cm~170.5 cm之间的学生有8人,频率为,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5 cm~170.5 cm之间的概率约为.‎ ‎4.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为(  )‎ A.49 B.0.5‎ C.0.51 D.0.49‎ 解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为=0.51.‎ 对点练(二) 互斥事件与对立事件 ‎1.掷一颗质地均匀的骰子,观察所得的点数为a,设事件A=“a为3”,B=“a为4”,C=“a为奇数”,则下列结论正确的是(  )‎ A.A与B为互斥事件 B.A与B为对立事件 C.A与C为对立事件 D.A与C为互斥事件 解析:选A 事件A与B不可能同时发生,A,B互斥,但不是对立事件,显然A与C不是互斥事件,更不是对立事件.‎ ‎2.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是(  )‎ A.互斥但非对立事件 B.对立事件 C.相互独立事件 D.以上都不对 解析:选A 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.‎ ‎3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是(  )‎ A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有两个红球 解析:选D 对于A,两事件是包含关系,对于B,两事件是对立事件,对于C,两事件可能同时发生.故选D.‎ ‎4.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一个产品是正品(甲级)的概率为(  )‎ A.0.95 B.0.97 ‎ C.0.92 D.0.08‎ 解析:选C 记抽检的产品是甲级品为事件A,是乙级品为事件B,是丙级品为事件C,这三个事件彼此互斥,因而所求概率为P(A)=1-P(B)-P(C)=1-5%-3%=92%=0.92.‎ ‎5.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是(  )‎ A. B. ‎ C. D. 解析:选D 由题意可得 即解得0,y>0,+=1.则x+y=(x+y)·=5+≥9,当且仅当x=2y时等号成立,故x+y的最小值为9.‎ 答案:9‎ ‎[大题综合练——迁移贯通]‎ ‎1.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):‎ ‎“厨余垃圾”箱 ‎“可回收物”箱 ‎“其他垃圾”箱 厨余垃圾 ‎400‎ ‎100‎ ‎100‎ 可回收物 ‎30‎ ‎240‎ ‎30‎ 其他垃圾 ‎20‎ ‎20‎ ‎60‎ ‎(1)试估计厨余垃圾投放正确的概率;‎ ‎(2)试估计生活垃圾投放错误的概率.‎ 解:(1)厨余垃圾投放正确的概率约为 ==.‎ ‎(2)设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确.事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为=0.7,所以P(A)约为1-0.7=0.3.‎ ‎2.某校有教职工500人,对他们的年龄状况和受教育程度进行调查,其结果如下:‎ 高中 专科 本科 研究生 合计 ‎35岁以下 ‎10‎ ‎150‎ ‎50‎ ‎35‎ ‎245‎ ‎35~50‎ ‎20‎ ‎100‎ ‎20‎ ‎13‎ ‎153‎ ‎50岁以上 ‎30‎ ‎60‎ ‎10‎ ‎2‎ ‎102‎ 随机地抽取一人,求下列事件的概率:‎ ‎(1)50岁以上具有专科或专科以上学历;‎ ‎(2)具有本科学历;‎ ‎(3)不具有研究生学历.‎ 解:(1)设事件A表示“50岁以上具有专科或专科以上学历”,‎ P(A)==0.144.‎ ‎(2)设事件B表示“具有本科学历”,‎ P(B)==0.16.‎ ‎(3)设事件C表示“不具有研究生学历”,‎ P(C)=1-=0.9.‎ ‎3.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.‎ ‎(1)完成如下的频率分布表:‎ 近20年六月份降雨量频率分布表 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎(2)假定今年6月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.‎ 解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎(2)由已知可得Y=+425,‎ 故P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)‎ ‎=P(X=70)+P(X=110)+P(X=220)‎ ‎=++=.‎ 第二节 古典概型与几何概型 本节主要包括3个知识点: ‎ ‎1.古典概型; 2.几何概型; 3.概率与统计的综合问题.‎ 突破点(一) 古典概型 ‎ ‎1.基本事件的特点 ‎(1)任何两个基本事件都是互斥的;‎ ‎(2)任何事件(除不可能事件)都可以表示成基本事件的和.‎ ‎2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型.‎ ‎(1)有限性:试验中所有可能出现的基本事件只有有限个;‎ ‎(2)等可能性:每个基本事件出现的可能性相等.‎ ‎3.古典概型的概率公式 P(A)=.‎ ‎1.判断题 ‎(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.(  )‎ ‎(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.(  )‎ ‎(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.(  )‎ ‎(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.(  )‎ 答案:(1)× (2)× (3)× (4)√‎ ‎2.填空题 ‎(1)一个口袋内装有2个白球和3个黑球,则在先摸出1个白球后放回的条件下,再摸出1个白球的概率是________.‎ 解析:先摸出1个白球后放回,再摸出1个白球的概率,实质上就是第二次摸到白球的概率,因为袋内装有2个白球和3个黑球,因此概率为.‎ 答案: ‎(2)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.‎ 解析:两数之和等于5有两种情况(1,4)和(2,3),总的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10种.∴所求概率P==.‎ 答案: ‎(3)从一副混合后的扑克牌(除去大、小王,共52张)中,随机抽取1张.事件A为“抽到红桃K”,事件B为“抽到黑桃”,则P(A∪B)=________(结果用最简分数表示).‎ 解析:∵P(A)=,P(B)=,‎ ‎∴P(A∪B)=P(A)+P(B)=+==.‎ 答案: 古典概型的求法 ‎[典例] (2017·山东高考)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.‎ ‎(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;‎ ‎(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.‎ ‎[解] (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个,则所求事件的概率为:P==.‎ ‎(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3‎ ‎},共2个,则所求事件的概率为:P=.‎ ‎[方法技巧]   解决古典概型实际问题的步骤 ‎1.(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(  )‎ A.         B. C. D. 解析:选C 从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P==.‎ ‎2.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为(  )‎ A. B. ‎ C. D. 解析:选B 如图,在正六边形ABCDEF的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF,BCDE,ABCF,CDEF,ABCD,ADEF,共6种情况,故构成的四边形是梯形的概率P==.‎ ‎3.(2018·湘中名校联考)从集合A={-2,-1,2}中随机选取一个数记为a,从集合B={-1,1,3}中随机选取一个数记为b,则直线ax-y+b=0不经过第四象限的概率为(  )‎ A. B. ‎ C. D. 解析:选A 从集合A,B 中随机选取一个数后组合成的数对有(-2,-1),(-2,1),(-2,3),(-1,-1),(-1,1),(-1,3),(2,-1),(2,1),(2,3),共9对,要使直线ax-y+b=0不经过第四象限,则需a≥0,b≥0,共有2对满足,所以所求概率P=,故选A.‎ ‎4.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.‎ 解析:这十个数是1,-3,(-3)2,(-3)3,(-3)4,(-3)5,(-3)6,(-3)7,(-3)8,(-3)9,所以它小于8的概率等于=.‎ 答案: ‎5.(2018·郑州质检)按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米.国家环保部门在2016年10月1日到2017年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下:‎ 组别 PM2.5浓度(微克/立方米)‎ 频数/天 第一组 ‎(0,35]‎ ‎32‎ 第二组 ‎(35,75]‎ ‎64‎ 第三组 ‎(75,115]‎ ‎16‎ 第四组 ‎115以上 ‎8‎ ‎(1)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?‎ ‎(2)在(1)中所抽取的样本PM2.5的平均浓度超过75微克/立方米的若干天中,随机抽取2天,求恰好有一天平均浓度超过115微克/立方米的概率.‎ 解:(1)在这120天中抽取30天,应采取分层抽样,第一组应抽取32×=8天;第二组应抽取64×=16天;第三组应抽取16×=4天;第四组应抽取8×=2天.‎ ‎(2)设PM2.5的平均浓度在(75,115]内的4天记为A1,A2,A3,A4,PM2.5的平均浓度在115以上的2天记为B1,B2.‎ 所以从这6天中任取2天的情况有A1A2,A1A3,A1A4,A1B1,A1B2,A2A3,A2A4,A2B1,A2B2,A3A4,A3B1,A3B2,A4B1,A4B2,B1B2,共15种.记“恰好有一天平均浓度超过115微克/立方米”为事件A,其中符合条件的情况有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2,A4B1,A4B2,共8种,故所求事件A的概率P(A)=.‎ 突破点(二) 几何概型  ‎ ‎1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.‎ ‎2.几何概型的两个基本特点 ‎(1)无限性:在一次试验中可能出现的结果有无限多个;‎ ‎(2)等可能性:每个试验结果的发生具有等可能性.‎ ‎3.几何概型的概率公式 P(A)=.‎ ‎1.判断题 ‎(1)在一个正方形区域内任取一点的概率是零.(  )‎ ‎(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(  )‎ ‎(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(  )‎ 答案:(1)√ (2)√ (3)√‎ ‎2.填空题 ‎(1)某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过2分钟的概率是________.‎ 解析:试验的全部结果构成的区域长度为5,所求事件的区域长度为2,故所求概率为P=.‎ 答案: ‎(2)已知正方体ABCD A1B1C1D1的棱长为1,在正方体内随机取点M,则使四棱锥MABCD的体积小于的概率为________.‎ 解析:在正方体ABCDA1B1C1D1中,设MABCD的高为h,则×S四边形ABCD×h=.又S四边形ABCD=1,所以h=.若体积小于,则h<.即点M在正方体的下半部分,所以P=.‎ 答案: ‎(3)‎ 如图所示,边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为,则阴影区域的面积为________.‎ 解析:设阴影区域的面积为S,则=,∴S=.‎ 答案: 与长度、角度有关的几何概型 ‎[例1] (1)在长为12 cm的线段AB上任取一点C,现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形的面积大于20 cm2的概率为(  )‎ A. B. ‎ C. D. ‎(2)(2017·江苏高考)记函数f(x)=的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是________.‎ ‎(3)如图所示,在等腰直角三角形ABC中,过直角顶点C在∠ACB内部任作一条射线CM,与AB交于点M,则AM20,解得20,‎ 所以a-2b<0.‎ 作出的可行域(如图阴影部分所示),易得该函数无零点的概率P==.‎ ‎[答案] (1)A (2) ‎[方法技巧]‎ 求解与面积有关的几何概型的关键点 求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.  ‎ 与体积有关的几何概型 ‎[例3] (1)在棱长为2的正方体ABCDA1B1C1D1中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为________.‎ ‎(2)(2018·黑龙江五校联考)在体积为V的三棱锥SABC的棱AB上任取一点P,则三棱锥SAPC的体积大于的概率是________.‎ ‎[解析] (1)正方体的体积为2×2×2=8,以O为球心,1为半径且在正方体内部的半球的体积为×πr3=×π×13=π,则点P到点O的距离大于1的概率为:1-=1-.‎ ‎(2)由题意可知>,三棱锥SABC的高与三棱锥SAPC的高相同.‎ 如图所示,作PM⊥AC于M,BN⊥AC于N,‎ 则PM,BN分别为△APC与△ABC的高,‎ 所以==>,‎ 又=,所以>,‎ 故所求的概率为(即为长度之比).‎ ‎[答案] (1)1- (2) ‎ [方法技巧]‎ 求解与体积有关的几何概型的关键点 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求. ‎ ‎1.(2017·陕西榆林二模)若函数f(x)=在区间[0,e]上随机取一个实数x,则f(x) 的值不小于常数e的概率是(  )‎ A. B.1- ‎ C. D. 解析:选B 当0≤x<1时,f(x),由几何概型的定义可知所求概率P==,故选C.‎ ‎4.如图,长方体ABCDA1B1C1D1中,有一动点在此长方体内随机运动,则此动点在三棱锥AA1BD内的概率为________.‎ 解析:设事件M为“动点在三棱锥AA1BD内”,‎ 答案: ‎5.在面积为1的正方形ABCD内部随机取一点P,则△PAB的面积大于等于的概率是________.‎ 解析:如图,由题意知AB=1,分别取AD与BC的中点E、F,连接EF,则EF綊AB,∴要使S△ABP≥,只需P在矩形CDEF中,∴所求概率为=.‎ 答案: ‎6.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π有零点的概率为________.‎ 解析:建立如图所示的平面直角坐标系,则试验的全部结果构成的区域为正方形ABCD及其内部.要使函数f(x)=x2+2ax-b2+π有零点,则必须有Δ=4a2+4b2-4π≥0,即a2+b2≥π,其表示的区域为图中阴影部分.故所求概率P===.‎ 答案: 突破点(三) 概率与统计的综合问题  ‎ 概率的计算问题往往与抽样方法、频率分布直方图、频率分布表、茎叶图等知识点相结合进行考查,一般难度不大,考查基础知识点和基本方法.解决此类综合问题可遵循以下几个步骤进行:,第一步,根据所给的频率分布直方图、茎叶图等统计图表确定样本数据、平均数等统计量;,第二步,根据题意,一般由频率估计概率,确定相应的事件的概率;,第三步,利用互斥事件、对立事件、古典概型等概率计算公式计算概率.‎ 概率与统计图表的综合问题 ‎[例1] 某校举行运动会,其中三级跳远的成绩在8.0米以上(四舍五入,精确到0.1米)的进入决赛,把所得数据进行整理后,分成6组,画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.‎ ‎(1)求进入决赛的人数;‎ ‎(2)经过多次测试发现,甲的成绩均匀分布在8~10米之间,乙的成绩均匀分布在9.5~10.5米之间,现甲、乙各跳一次,求甲比乙跳得远的概率.‎ ‎[解] (1)第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14,∴总人数为=50.‎ 易知第4,5,6组的学生均进入决赛,人数为(0.28+0.30+0.14)×50=36,即进入决赛的人数为36.‎ ‎(2)设甲、乙各跳一次的成绩分别为x,y米,则作出不等式组表示的平面区域如图中长方形ABCD,设事件M表示“甲比乙跳得远”,则x>y,满足的区域如图中阴影部分所示.‎ 由几何概型得P(M)==,即甲比乙跳得远的概率为.‎ ‎[方法技巧] 破解概率与统计图表综合问题的“三步曲”‎ 概率与抽样方法的综合问题 ‎[例2] 家政服务公司根据用户满意程度将本公司家政服务员分为两类,其中A类服务员12名,B类服务员x名.‎ ‎(1)若采用分层抽样的方法随机抽取20名家政服务员参加技术培训,抽取到B类服务员的人数是16,求x的值;‎ ‎(2)某客户来公司聘请2名家政服务人员,但是由于公司人员安排已经接近饱和,只有3名A类家政服务员和2名B类家政服务员可供选择.‎ ‎①请列出该客户的所有可能选择的情况;‎ ‎②求该客户最终聘请的家政服务员中既有A类又有B类的概率.‎ ‎[解] (1)20-16=4,由x=16,可得x=48.‎ ‎(2)①设3名A类家政服务员的编号为a,b,c,2名B类家政服务员的编号为1,2,则所有可能的情况有(a,b),(a,c),(a,1),(a,2),(b,c),(b,1),(b,2),(c,1),(c,2),(1,2),共10种选择.‎ ‎②该客户最终聘请的家政服务员中既有A类又有B类的情况有(a,1),(a,2),(b,1),(b,2),(c,1),(c,2),共6种,故该客户最终聘请的家政服务员中既有A类又有B类的概率为P==.‎ ‎[方法技巧]‎ 求解概率与分层抽样综合问题的步骤 ‎(1)利用分层抽样的抽样比,求出各层的样本数或各层应抽取的样本数;‎ ‎(2)计算样本空间所含的基本事件个数与所求事件含有的基本事件的个数;‎ ‎(3)利用古典概型的概率计算公式得出结果.  ‎ 概率与统计案例的综合问题 ‎  [例3] 为了解人们对“生育二胎放开”‎ 政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:‎ 年龄 ‎[5,15)‎ ‎[15,25)‎ ‎[25,35)‎ ‎[35,45)‎ ‎[45,55)‎ ‎[55,65]‎ 频数 ‎5‎ ‎10‎ ‎15‎ ‎10‎ ‎5‎ ‎5‎ 支持“生 育二胎”‎ ‎4‎ ‎5‎ ‎12‎ ‎8‎ ‎2‎ ‎1‎ ‎(1)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;‎ 年龄不低于45‎ 岁的人数 年龄低于45岁 的人数 总计 支持 不支持 总计 ‎(2)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?‎ 参考数据:‎ P(K2≥k)‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ k ‎3.841‎ ‎6.635‎ ‎10.828‎ K2= ‎ ‎[解] (1)完成的2×2列联表如下.‎ 年龄不低于45‎ 岁的人数 年龄低于45岁 的人数 总计 支持 ‎3‎ ‎29‎ ‎32‎ 不支持 ‎7‎ ‎11‎ ‎18‎ 总计 ‎10‎ ‎40‎ ‎50‎ K2=≈6.27<6.635,‎ 所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.‎ ‎(2)设年龄在[5,15)中支持“生育二胎”的4人分别为a,b,c,d,不支持“生育二胎”的人记为M,‎ 则从年龄在[5,15)的被调查人中随机选取两人所有可能的结果有:(a,b),(a,c),(a,d),(a,M),(b,c),(b,d),(b,M),(c,d),(c,M),(d,M),共10个.‎ 设恰好这两人都支持“生育二胎”为事件A,‎ 则事件A所有可能的结果有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d ‎),共6个.‎ 所以P(A)==.‎ 所以对年龄在[5,15)的被调查人中随机选取两人进行调查时,恰好这两人都支持“生育二胎”的概率为.‎ ‎1.(2018·潍坊模拟)济南天下第一泉风景区为了做好宣传工作,准备在A和B两所大学分别招募8名和12名志愿者,将这20名志愿者的身高(单位:cm)编成如图所示的茎叶图.若身高在175 cm以上(包括175 cm)定义为“高精灵”,身高在175 cm以下定义为“帅精灵”.已知A大学志愿者的身高的平均数为176,B大学志愿者的身高的中位数为168.‎ ‎(1)求x,y的值;‎ ‎(2)如果用分层抽样的方法从“高精灵”和“帅精灵”中随机抽取5人,再从这5人中选2人,求至少有1人为“高精灵”的概率.‎ 解:(1)由茎叶图得,‎ =176,‎ =168.解得x=5,y=7.‎ ‎(2)由题意可得,“高精灵”有8人,“帅精灵”有12人,如果从“高精灵”和“帅精灵”中抽取5人,则抽取的“高精灵”和“帅精灵”的人数分别为8×=2,12×=3.‎ 记抽取的“高精灵”分别为b1,b2,“帅精灵”分别为c1,c2,c3,‎ 从这5人中任选2人的所有可能情况为(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共10种,‎ 记“从这5人中选2人,至少有1人为‘高精灵’”为事件A,则A包含的情况为(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共7种,所以P(A)=.‎ 故从这5人中选2人,至少有1人为“高精灵”的概率为.‎ ‎2.某学校研究性学习小组对该校高三学生的视力情况进行调查,在高三的全体1 000名学生中随机抽取了若干名学生的体检表,并得到如下直方图:‎ ‎(1)若直方图中前三组的频率成等比数列,后四组的频率成等差数列,试估计全年级视力在5.0以下的人数;‎ ‎(2)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1 000名的100名学生进行了调查,得到如下数据:‎ 年级名次是否近视 ‎1~50‎ ‎951~1 000‎ 近视 ‎41‎ ‎32‎ 不近视 ‎9‎ ‎18‎ 根据表中的数据,能否在出错的概率不超过0.05的前提下认为视力与学习成绩有关?‎ ‎(3)已知(2)中调查的年级前50名且不近视的9名学生中有6名男生,3名女生,现在从这9人中随机抽取两人访谈用眼习惯,求恰好抽中男、女生各一名的概率.‎ 解:(1)设各组的频率为fi(i=1,2,3,4,5,6).‎ 依题意,前三组的频率成等比数列,后四组的频率成等差数列,故f1=0.15×0.2=0.03,f2=0.45×0.2=0.09,f3==0.27,由=1-(0.03+0.09)得f6=0.17,‎ 所以视力在5.0以下的频率为1-0.17=0.83,‎ 故全年级视力在5.0以下的人数约为1 000×0.83=830.‎ ‎(2)K2==≈4.110>3.841,‎ 因此可以在犯错误的概率不超过0.05的前提下认为视力与学习成绩有关系.‎ ‎(3)用数字1,2,3,4,5,6表示6名男生,用数字7,8,9表示3名女生,用{x,y}表示一次抽取的结果,则所有可能的抽取结果有36种:{1,2},{1,3},{1,4},{1,5},{1,6},{1,7},{1,8},{1,9},{2,3},{2,4},{2,5},{2,6},{2,7},{2,8},{2,9},{3,4},{3,5},{3,6},{3,7},{3,8},{3,9},{4,5},{4,6},{4,7},{4,8},{4,9},{5,6},{5,7},{5,8},{5,9},{6,7},{6,8},{6,9},{7,8},{7,9},{8,9}.‎ 其中,恰有一名男生和一名女生的结果有18种:{1,7},{1,8},{1,9},{2,7},{2,8},{2,9},{3,7},{3,8},{3,9},{4,7},{4,8},{4,9},{5,7},{5,8},{5,9},{6,7},{6,8},{6,9}.‎ 因此,恰好抽中男、女生各一名的概率为P==.‎ ‎3.(2018·郑州第一次质检)‎ 近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中PM2.5指数的检测数据,统计结果如下:‎ PM2.5‎ 指数 ‎[0,50]‎ ‎(50,100]‎ ‎(100,150]‎ ‎(150,200]‎ ‎(200,250]‎ ‎(250,300]‎ ‎>300‎ 空气 质量 优 良 轻微污染 轻度污染 中度污染 中度重污染 重度污染 天数 ‎4‎ ‎13‎ ‎18‎ ‎30‎ ‎9‎ ‎11‎ ‎15‎ 记某企业每天由空气污染造成的经济损失为S(单位:元),PM2.5指数为x.当x在区间[0,100]内时对企业没有造成经济损失;当x在区间(100,300]内时对企业造成的经济损失成直线模型(当PM2.5指数为150时造成的经济损失为500元,当PM2.5指数为200时,造成的经济损失为700元);当PM2.5指数大于300时造成的经济损失为2 000元.‎ ‎(1)试写出S(x)的表达式;‎ ‎(2)试估计在本年内随机抽取一天,该天经济损失S大于500元且不超过900元的概率;‎ ‎(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有95%的把握认为郑州市本年度空气重度污染与供暖有关?‎ 非重度污染 重度污染 合计 供暖季 非供暖季 合计 ‎100‎ 解:(1)依题意,可得S(x)=.‎ ‎(2)设“在本年内随机抽取一天,该天经济损失S大于500元且不超过900元”为事件A,‎ 由5003.841,‎ 所以有95%的把握认为空气重度污染与供暖有关.‎ ‎[全国卷5年真题集中演练——明规律]                   ‎ ‎1.(2017·全国卷Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是(  )‎ A.         B. C. D. 解析:选B 不妨设正方形的边长为2,则正方形的面积为4,正方形的内切圆的半径为1,面积为π.由题意,得S黑=S圆=,故此点取自黑色部分的概率P==.‎ ‎2.(2017·全国卷Ⅱ)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为(  )‎ A. B. C. D. 解析:选D 记两次取得卡片上的数字依次为a,b,则一共有25个不同的数组(a,b),其中满足a>b的数组共有10个,分别为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),因此所求的概率P==.‎ ‎3.(2016·全国卷Ⅰ)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(  )‎ A. B. ‎ C. D. 解析:选B 如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P==.故选B.‎ ‎4.(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则 红色和紫色的花不在同一花坛的概率是(  )‎ A. B. ‎ C. D. 解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的情况有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的情况有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P==,故选C.‎ ‎5.(2016·全国卷Ⅱ)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(  )‎ A. B. C. D. 解析:选B 如图,若该行人在时间段AB的某一时刻来到该路口,则该行人至少等待15秒才出现绿灯.AB长度为40-15=25,由几何概型的概率公式知,至少需要等待15秒才出现绿灯的概率为=,故选B.‎ ‎6.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,xn,y1,y2,…,yn,构成n个数对(x1,y1),(x2,y2),…,(xn,yn),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为(  )‎ A. B. ‎ C. D. 解析:选C 因为x1,x2,…,xn,y1,y2,…,yn都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(xn,yn)都在边长为1的正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得=,即=,所以π=.‎ ‎7.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(  )‎ A. B. C. D. 解析:选C ∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P=.‎ ‎8.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为(  )‎ A. B. C. D. 解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.故选C.‎ ‎ [课时达标检测]‎ ‎ [小题对点练——点点落实]‎ 对点练(一) 古典概型 ‎1.(2018·山西省四校联考)甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为(  )‎ A. B. C. D. 解析:选A ∵甲、乙两人参加学习小组的所有事件有(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9个,其中两人参加同一个小组的事件有(A,A),(B,B),(C,C),共3个,∴两人参加同一个小组的概率为=.‎ ‎2.(2018·陕西模拟)现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有放回地随机选出一道题进行说课,其中恰有一男一女抽到同一道题的概率为(  )‎ A. B. C. D. 解析:选C 记两道题分别为A,B,所有抽取的情况为AAA,AAB,ABA,ABB,‎ BAA,BAB,BBA,BBB(其中第1个,第2个分别表示两个女教师抽取的题目,第3个表示男教师抽取的题目),共有8种;其中满足恰有一男一女抽到同一道题目的情况为ABA,ABB,BAA,BAB,共4种.故所求事件的概率为.故选C.‎ ‎3.(2018·深圳调研)将一颗骰子掷两次,则第二次出现的点数是第一次出现的点数的3倍的概率为(  )‎ A. B. C. D. 解析:选A 一颗骰子掷两次,共有36种情况,满足条件的情况有(1,3),(2,6),共2种,所以所求的概率P==,故选A.‎ ‎4.已知集合M=,N=,A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是(  )‎ A. B. C. D. 解析:选C 易知过点(0,0)与y=x2+1相切的直线为y=2x(斜率小于0的无需考虑),集合N中共有16个元素,其中使直线OA的斜率不小于2的有(1,2),(1,3),(1,4),(2,4),共4个,故所求的概率为=.‎ ‎5.(2018·重庆适应性测试)从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为________.‎ 解析:依题意,从2,3,4,5,6这5个数字中任取3个,共有10种不同的取法,其中所取3个数之和为偶数的取法共有1+3=4种(包含两种情形:一种情形是所取的3个数均为偶数,有1种取法;另一种情形是所取的3个数中2个是奇数,另一个是偶数,有3种取法),因此所求的概率为=.‎ 答案: ‎6.(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.‎ 解析:将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件=“出现向上的点数之和大于或等于10”, 包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P()==,所以P(A)=1-=.‎ 答案: 对点练(二) 几何概型 ‎1.(2018·武汉调研)在区间[0,1]上随机取一个数x,则事件“log0.5(4x-3)≥0”发生的概率为(  )‎ A. B. ‎ C. D. 解析:选D 由log0.5(4x-3)≥0,得0<4x-3≤1,‎ 解得<x≤1,所以所求概率P==.‎ ‎2.设不等式组表示的平面区域为D.在区域D内随机取一个点,则此点到直线y+2=0的距离大于2的概率是(  )‎ A. B. C. D. 解析:选D 如图,各点的坐标为B(-2,0),C(4,0),D(-6,-2),E(4,-2),F(4,3),所以DE=10,EF=5,BC=6,CF=3.不等式对应的区域为三角形DEF,当点在线段BC上时,此点到直线y+2=0的距离等于2,所以要使此点到直线y+2=0的距离大于2,则此点应在三角形BCF中.根据几何概型可知所求概率P===,故选D.‎ ‎3.已知正棱锥SABC的底面边长为4,高为3,在正棱锥内任取一点P,使得VPABC<VSABC的概率是(  )‎ A. B. ‎ C. D. 解析:选B 由题意知,当点P在三棱锥的中截面以下时,满足VPABC<VSABC,‎ 故使得VPABC<VSABC的概率:P==1-3=.‎ ‎4.(2018·江西模拟)向面积为S的平行四边形ABCD中任投一点M,则△MCD的面积小于的概率为(  )‎ A. B. C. D. 解析:选C 设△MCD的高为ME,ME的反向延长线交AB于点F,当“△MCD的面积等于”时,CD·ME=CD·EF,即ME=EF,过M作GH∥AB,则满足△MCD的面积小于的点M在▱CDGH中,由几何概型的概率公式得到△MCD的面积小于的概率为=.故选C.‎ ‎5.已知椭圆+y2=1的焦点为F1,F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于点P,则使得·<0的概率为________.‎ 解析:设P(x,y),则·<0即为(--x,-y)·(-x,-y)<0,即为x2-3+y2<0,即为x2-3+1-<0,解得-