- 205.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第四节 数系的扩充与复数的引入
[最新考纲] 1.理解复数的概念,理解复数相等的充要条件.2.了解复数的代数表示法及其几何意义.3.能进行复数代数形式的四则运算,了解两个具体复数相加、减的几何意义.
1.复数的有关概念
(1)复数的概念:形如a+bi(a,b∈R)的数叫复数,其中a,b分别是它的实部和虚部.若b=0,则a+bi为实数,若b≠0,则a+bi为虚数,若a=0且b≠0,则a+bi为纯虚数.
(2)复数相等:a+bi=c+di⇔a=c,b=d(a,b,c,d∈R).
(3)共轭复数:a+bi与c+di共轭⇔a=c,b=-d(a,b,c,d∈R).
(4)复数的模:向量的模r叫做复数z=a+bi的模,即|z|=|a+bi|=.
2.复数的几何意义
复数z=a+bi复平面内的点Z(a,b) 平面向量=(a,b).
3.复数的运算
(1)复数的加、减、乘、除运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),则
①加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i;
②减法:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i;
③乘法:z1·z2=(a+bi)·(c+di)=(ac-bd)+(ad+bc)i;
④除法:===+i(c+di≠0).
(2)复数加法的运算定律
复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).
1.(1±i)2=±2i;=i;=-i.
2.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n∈N+).
3.z·=|z|2=||2,|z1·z2|=|z1|·|z2|,=,|zn|=|z|n.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)若a∈C,则a2≥0.( )
(2)已知z=a+bi(a,b∈R),当a=0时,复数z为纯虚数.( )
(3)复数z=a+bi(a,b∈R)的虚部为bi.( )
(4)方程x2+x+1=0没有解.( )
[答案] (1)× (2)× (3)× (4)×
二、教材改编
1.若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为( )
A.-1 B.0
C.1 D.-1或1
A [∵z为纯虚数,∴∴x=-1.]
2.在复平面内,向量对应的复数是2+i,向量对应的复数是-1-3i,则向量对应的复数是( )
A.1-2i B.-1+2i
C.3+4i D.-3-4i
D [∵=+=-=-1-3i-2-i=-3-4i,故选D.]
3.设复数z满足=i,则|z|等于( )
A.1 B.
C. D.2
A [=i,则z==i,
∴|z|=1.]
4.已知(1+2i)=4+3i,则z=________.
2+i [由(1+2i)=4+3i得===2-i.
∴z=2+i.]
考点1 复数的概念
复数的分类、复数相等、复数的模、共轭复数的概念都与复数的实部和虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即a+bi(a,b∈R)的形式,再根据题意列方程(组)求解.
1.若复数(m2-m)+mi为纯虚数,则实数m的值为( )
A.-1 B.0
C.1 D.2
C [由纯虚数的概念得得m=1,故选C.]
2.(2019·长沙模拟)已知i为虚数单位,若复数z=+i(a∈R)的实部与虚部互为相反数,则a=( )
A.-5 B.-1
C.- D.-
D [z=+i=+i=+i,
因为复数z=+i(a∈R)的实部与虚部互为相反数,所以-=,解得a=-.故选D.]
3.(2019·唐山模拟)已知=2+i,则(z的共轭复数)为( )
A.-3-i B.-3+i
C.3+i D.3-i
C [由题意得z=(2+i)(1-i)=3-i,
所以=3+i,故选C.]
4.(2018·全国卷Ⅰ)设z=+2i,则|z|=( )
A.0 B.
C.1 D.
C [法一:因为z=+2i=+2i=-i+2i=i,所以|z|=1,故选C.
法二:因为z=+2i==,所以|z|====1,故选C.]
解决此类时,一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
考点2 复数的运算
复数代数形式运算问题的解题策略
(1)复数的加、减、乘法:复数的加、减、乘法类似于多项式的运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.
(2)复数的除法:除法的关键是分子分母同乘以分母的共轭复数,使分母实数化解题中要注意把i的幂写成最简形式.
(1)(2019·全国卷Ⅲ)若z(1+i)=2i,则z=( )
A.-1-i B.-1+i
C.1-i D.1+i
(2)计算:=( )
A.2 B.-2
C.2i D.-2i
(3)(2019·惠州模拟)已知复数z的共轭复数为,若(1-i)=2i(i为虚数单位),则z=( )
A.i B.i-1
C.-i-1 D.-i
(4)(2019·武汉调研)已知复数z满足z+|z|=1+i,则z=( )
A.-i B.i
C.1-i D.1+i
(1)D (2)A (3)C (4)B [(1)由题意得z===1+i,故选D.
(2)===2,故选A.
(3)由已知可得===-1+i,则z=-1-i,故选C.
(4)法一:设z=a+bi(a,b∈R),则z+|z|=(a+)+bi=1+i,所以解得所以z=i,故选B.
法二:把各选项代入验证,知选项B满足题意.]
(1)在只含有z的方程中,z类似于代数方程中的x,可直接求解;
(2)在含有z,,|z|中至少两个的复数方程中,可设z=a+bi,a,b∈R,变换方程,利用两复数相等的充要条件得出关于a,b的方程组,求出a,b,从而得出复数z.
1.(2018·全国卷Ⅲ)(1+i)(2-i)=( )
A.-3-i B.-3+i
C.3-i D.3+i
D [(1+i)(2-i)=2-i+2i-i2=3+i.]
2.对于两个复数α=1-i,β=1+i,有下列四个结论:①αβ=1;②=-i;③=1;④α2+β2=0,其中正确结论的个数为( )
A.1 B.2
C.3 D.4
C [αβ=(1-i)(1+i)=2,①不正确;===-i,②正确;=|-i|=1,③正确;α2+β2=(1-i)2+(1+i)2=-2i+2i=0,④正确.]
3.(2019·贵阳模拟)设i为虚数单位,复数z满足i(z+1)=1,则复数z=( )
A.1+i B.1-i
C.-1-i D.-1+i
C [由题意,得z=-1=-1-i,故选C.]
4.已知a为实数,若复数z=(a2-1)+(a+1)i为纯虚数,则=( )
A.1 B.0
C.1+i D.1-i
D [z=(a2-1)+(a+1)i为纯虚数,
则有a2-1=0,a+1≠0,
得a=1,
则有===1-i.]
考点3 复数的几何意义
与复数几何意义相关的问题的一般解法
第一步,进行简单的复数运算,将复数化为标准的代数形式;
第二步,把复数问题转化为复平面的点之间的关系,依据是复数a+bi与复平面上的点(a,b)一一对应.
(1)(2019·全国卷Ⅰ)设复数z满足|z-i|=1,z在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1 B.(x-1)2+y2=1
C.x2+(y-1)2=1 D.x2+(y+1)2=1
(2)(2019·全国卷Ⅱ)设z=-3+2i,则在复平面内对应的点位于( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
(3)已知z=(m+3)+(m-1)i在复平面内对应的点在第四象限,则实数m的取值范围是( )
A.(-3,1) B.(-1,3)
C.(1,+∞) D.(-∞,-3)
(1)C (2)C (3)A [(1)设复数z与i分别表示复平面内的点Z与点P,则P(0,1),且|z-i|表示复平面内点Z与点P之间的距离,所以点Z(x,y)到点P(0,1)的距离为定值1,所以Z的轨迹是以(0,1)为圆心,1为半径的圆,故选C.
(2)∵z=-3+2i,∴=-3-2i,
∴在复平面内,对应的点为(-3,-2),此点在第三象限.
(3)由已知可得复数z在复平面内对应的点的坐标为(m+3,m-1),所以解得-3<m<1,故选A.]
复平面内的点、向量及向量对应的复数是一一对应的,要求某个复数对应的点,只需确定复数的实部和虚部即可.
1.如图,在复平面内,复数z1,z2对应的向量分别是,,则复数z1·z2对应的点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
D [由已知=(-2,-1),=(0,1),所以z1=-2-i,z2=i,z1z2=1-2i,
它所对应的点为(1,-2),在第四象限.]
2.若复数z满足|z-i|≤(i为虚数单位),则z在复平面内所对应的图形的面积为________.
2π [设z=x+yi(x,y∈R),由|z-i|≤得|x+(y-1)i|≤,所以≤,所以x2+(y-1)2≤2,所以z在复平面内所对应的图形是以点(0,1)为圆心,以为半径的圆及其内部,它的面积为2π.]
3.已知复数z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面内对应的点分别为A,B,C,若=λ+μ(λ,μ∈R),则λ+μ的值是________.
1 [由条件得=(3,-4),=(-1,2),
=(1,-1),
根据=λ+μ得
(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),所以解得所以λ+μ=1.]