- 178.50 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
概率、统计综合问题的三种常用求解策略
公式法
在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是.
(1)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列;
(2)求教师甲在一场比赛中获奖的概率.
【解】 (1)X的所有可能取值为0,1,2,3,4,5,6.
依条件可知,X~B(6,),
P(X=k)=C·()k·()6-k(k=0,1,2,3,4,5,6).
所以X的分布列为
X
0
1
2
3
4
5
6
P
(2)设教师甲在一场比赛中获奖为事件A,
则P(A)=C·()2·()4+C··()5+()6=,即教师甲在一场比赛中获奖的概率为.
对于此类问题求解,若随机变量X服从二项分布B(n,p),则其概率、均值与方差可直接利用公式P(X=k)=Cpk(1-p)n-k(k=0,1,2,…,n),E(X)=np,D(X)=np(1-p)求得.
间接法
随机观测生产某种零件的某工厂20名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,48,37,25,45,43,31,49,34,33,43,38,32,46,39,36.根据上述数据得到样本的频率分布表如下:
分组
频数
频率
[25,30]
2
0.10
(30,35]
4
0.20
(35,40]
5
0.25
(40,45]
m
fm
(45,50]
n
fn
(1)确定样本频率分布表中m,n,fm和fn的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取3人,至少有1人的日加工零件数落在区间(30,35]内的概率.
【解】 (1)由已知数据,得区间(40,45]内的频数m=6,区间(45,50]内的频数n=3,故fm==0.3,fn==0.15.
(2)由频率分布表,画出频率分布直方图如下图:
(3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]内的频率为0.2,设所取的3人中,日加工零件数落在区间(30,35]内的人数为ξ,则ξ~B(3,0.2),
故P(ξ≥1)=1-P(ξ=0)=1-(1-0.2)3=0.488.
因此至少有1人的日加工零件数落在区间(30,35]内的概率为0.488.
当复杂事件正面情况比较多,反面情况较少时,可利用其对立事件进行求解,即“正难则反”.对于“至少”“至多”等问题往往用这种方法求解.
对称法
从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.
①利用该正态分布,求P(187.8