- 244.00 KB
- 2021-06-16 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第五节 综合法、分析法、反证法、数学归纳法
[最新考纲] 1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.
1.综合法、分析法
内容
综合法
分析法
定义
从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法
从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法
实质
由因导果
执果索因
框图
表示
→
→…→
→→…→
文字
语言
因为……所以……或由……得……
要证……只需证……即证……
2.反证法
(1)反证法的定义:在假定命题结论的反面成立的前提下,经过推理,若推出的结果与定义、公理、定理矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题结论成立的方法叫反证法.
(2)反证法的证题步骤:
①作出否定结论的假设;②进行推理,导出矛盾;③否定假设,肯定结论.
3.数学归纳法
一般地,证明一个与正整数n有关的命题,可按下列步骤进行:
(1)归纳奠基:证明当n取第一个值n0(n0∈N+)时命题成立;
(2)归纳递推:假设n=k(k≥n0,k∈N+)时命题成立,证明当n=k+1时命题也成立.
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)用数学归纳法证明问题时,第一步是验证当n=1时结论成立.( )
(2)综合法是直接证明,分析法是间接证明.( )
(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )
(4)用反证法证明结论“a>b”时,应假设“aQ B.P=Q
C.P
Q,只需P2>Q2,即2a+13+2>2a+13+2,只需a2+13a+42>a2+13a+40.因为42>40成立,所以P>Q成立.故选A.] 4.已知数列{an}满足an+1=a-nan+1,n∈N+,且a1=2,则a2=________,a3=________,a4=________,猜想an=________. 3 4 5 n+1 [易得a2=3,a3=4,a4=5,故猜想an=n+1.] 考点1 综合法的应用 掌握综合法证明问题的思路 综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性. 设a,b,c均为正数,且a+b+c=1. 证明:(1)ab+bc+ac≤; (2)++≥1. [证明] (1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac, 得a2+b2+c2≥ab+bc+ca, 由题设得(a+b+c)2=1, 即a2+b2+c2+2ab+2bc+2ca=1, 所以3(ab+bc+ca)≤1, 即ab+bc+ca≤. (2)因为a,b,c均为正数, +b≥2a,+c≥2b,+a≥2c, 故+++(a+b+c)≥2(a+b+c), 即++≥a+b+c,所以++≥1. [母题探究] 本例的条件不变,证明a2+b2+c2≥. [证明] 因为a+b+c=1, 所以1=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac, 因为2ab≤a2+b2,2bc≤b2+c2,2ac≤a2+c2, 所以2ab+2bc+2ac≤2(a2+b2+c2), 所以1≤a2+b2+c2+2(a2+b2+c2), 即a2+b2+c2≥. (1)不等式的证明常借助基本不等式,注意其使用的前提条件“一正、二定、三相等”;(2) 应用重要不等式a2+b2≥2ab放缩时要注意待证不等式的方向性. 在△ABC中,角A,B,C的对边分别为a,b,c,已知sin Asin B+sin Bsin C+cos 2B=1. (1)求证:a,b,c成等差数列; (2)若C=,求证:5a=3b. [证明] (1)由已知得sin Asin B+sin Bsin C=2sin2B, 因为sin B≠0,所以sin A+sin C=2sin B, 由正弦定理, 得a+c=2b, 即a,b,c成等差数列. (2)由C=,c=2b-a及余弦定理得 (2b-a)2=a2+b2+ab,即有5ab-3b2=0, 即5a=3b. 考点2 分析法的应用 分析法证明问题的思路及适用范围 利用分析法证明问题,先从结论入手,由此逐步推出保证此结论成立的充分条件;当已知条件与结论之间的联系不够明显、直接,或证明过程中所需用的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的等式或不等式,常考虑用分析法. 已知△ABC的三个内角A,B,C成等差数列,A,B,C的对边分别为a,b,c. 求证:+=. [证明] 要证+=, 即证+=3, 也就是+=1, 只需证c(b+c)+a(a+b)=(a+b)(b+c), 需证c2+a2=ac+b2, 又△ABC三内角A,B,C成等差数列,故B=60°, 由余弦定理,得b2=c2+a2-2accos 60°, 即b2=c2+a2-ac, 故c2+a2=ac+b2成立. 于是原等式成立. (1)用分析法证明时,要注意书写格式的规范性,常常用“要证(欲证)……”“即证……”“只需证……”等,逐步分析,直到一个明显成立的结论. (2)证明较复杂的问题时,可以采用两头凑的办法,如本例中,通过分析法找出与结论等价(或充分)的中间结论“c2+a2=ac+b2”,然后通过综合法证明这个中间结论,从而使原命题得证. 若a,b∈(1,+∞),证明<. [证明] 要证<, 只需证()2<()2, 只需证a+b-1-ab<0, 即证(a-1)(1-b)<0. 因为a>1,b>1,所以a-1>0,1-b<0, 即(a-1)(1-b)<0成立, 所以原不等式成立. 考点3 反证法的应用 用反证法证明问题的步骤 (1)反设:假定所要证的结论不成立,而设结论的反面成立.(否定结论) (2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.(推导矛盾) (3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立) 设a>0,b>0,且a+b=+. 证明:(1)a+b≥2; (2)a2+a<2与b2+b<2不可能同时成立. [证明] 由a+b=+=,a>0,b>0,得ab=1. (1)由基本不等式及ab=1, 有a+b≥2=2, 即a+b≥2. (2)假设a2+a<2与b2+b<2同时成立, 则由a2+a<2及a>0, 得00且b≠1,b,r均为常数)的图像上. (1)求r的值; (2)当b=2时,记bn=2(log2an+1)(n∈N+),证明:对任意的n∈N+,不等式··…·>成立. [解] (1)由题意得,Sn=bn+r, 当n≥2时,Sn-1=bn-1+r. 所以an=Sn-Sn-1=bn-1(b-1). 由于b>0,且b≠1, 所以n≥2时,数列{an}是以b为公比的等比数列. 又a1=S1=b+r,a2=b(b-1), 所以=b,即=b,解得r=-1. (2)证明:由(1)及b=2知an=2n-1. 因此bn=2n(n∈N+), 所证不等式为··…·>. ①当n=1时,左式=,右式=, 左式>右式,所以结论成立. ②假设n=k(k≥1,k∈N+)时结论成立, 即··…·>, 则当n=k+1时, ··…··>·=, 要证当n=k+1时结论成立, 只需证≥, 即证≥, 由基本不等式得 =≥成立, 故≥成立,所以当n=k+1时,结论成立. 由①②可知,n∈N+时, 不等式··…·>成立. 已知f(n)=1++++…+,g(n)=-,n∈N+. (1)当n=1,2,3时,试比较f(n)与g(n)的大小关系; (2)猜想f(n)与g(n)的大小关系,并给出证明. [解] (1)当n=1时,f(1)=1,g(1)=1, 所以f(1)=g(1); 当n=2时,f(2)=,g(2)=,所以f(2)<g(2); 当n=3时,f(3)=,g(3)=, 所以f(3)<g(3). (2)由(1)猜想,f(n)≤g(n),用数学归纳法证明. ①当n=1,2,3时,不等式显然成立. ②假设当n=k(k>3,k∈N+)时不等式成立, 即1++++…+<-, 则当n=k+1时, f(k+1)=f(k)+<-+. 因为- =- =<0, 所以f(k+1)<-=g(k+1). 由①②可知,对一切n∈N+,都有f(n)≤g(n)成立.