• 370.00 KB
  • 2021-06-19 发布

2012年数学高三湖北高考模拟重组预测试卷二

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2012届高三湖北高考模拟重组预测试卷二 一、选择题 ‎1、函数在处有极值,则的值为( ).‎ ‎ A. B. C. D.‎ ‎2、已知,则( ).‎ A. B. C. D.‎ ‎3、已知命题:函数在内恰有一个零点;命题:函数在上是减函数.若且为真命题,则实数的取值范围是( ).‎ ‎ A.       B.       C.      D.或 ‎4、下列几何体各自的三视图中,有且仅有两个视图相同的是( ).‎ ‎5、已知的三顶点坐标为,,,点的坐标为,向内部投一点,那么点落在内的概率为( ).‎ A. B. ‎ ‎ C. D.‎ ‎6、已知、分别是双曲线的左、右焦点,为双曲线上的一点,若,且的三边长成等差数列,则双曲线的离心率是( ).‎ ‎ A. B. C. D.‎ ‎7、经过椭圆的一个焦点作倾斜角为的直线,交椭圆于、两点.设为坐标原点,则 等于( ).‎ ‎ A. B. C.或 D.‎ ‎8、设和是定义在同一区间上的两个函数,若对任意的,都有,则称和在上是“密切函数”,称为“密切区间”,设与在上是“密切函数”,则它的“密切区间”可以是( ).‎ A. B. C. D.‎ ‎9、已知正项数列的各项均不相等,且,则下列各不等式中一定成立的是( ).‎ ‎ A. B. C. D.‎ ‎10、若集合则满足条件的实数x的个数有( )‎ A. 1个 B. 2个 C.3个 D. 4个 二、填空题 ‎11、已知△中,于,,,则___.‎ ‎12、命题“”的否定是 .‎ ‎13、如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数之和是.‎ 甲 乙 ‎14、已知实数x,y满足且的最大值是 。‎ ‎15、 已知为如图所示的程序框图中输出的结果,则a为 .‎ ‎16、若不等式对一切非零实数均成立,则实数的取值范围是.‎ ‎17、已知,①设方程的个根是,则; ‎ ‎②设方程的个根是、,则;‎ ‎③设方程的个根是、、,则;‎ ‎④设方程的个根是、、、,则;;‎ 由以上结论,推测出一般的结论:设方程的个根是、、、,则.‎ 三、解答题 ‎18、 在中,已知、,、AC,两边所 在的直线分别与轴交于、两点,且.‎ ‎ ⑴求点的轨迹方程;‎ ‎ ⑵若,‎ ‎ ①试确定点的坐标;‎ ‎ ②设是点的轨迹上的动点,猜想的周长最大时点的位置,并证明你的猜想.‎ ‎19、已知函数.‎ ‎(Ⅰ)求的最小正周期;‎ ‎(Ⅱ)若函数的图象是由的图象向右平移个单位长度得到的,当[,]时,求的最大值和最小值.‎ ‎20、 已知数列是首项为,公差为的等差数列,数列满足.‎ ‎ ⑴若、、成等比数列,求数列的通项公式;‎ ‎ ⑵当时,不等式能否对于一切恒成立?请说明理由.‎ ‎21、 某班同学利用寒假在5个居民小区内选择两个小区逐户进行一次“低碳生活习惯”的调查,以计算每户的碳月排放量.若月排放量符合低碳标准的称为“低碳族”,否则称为“非低碳族”.若小区内有至少的住户属于“低碳族”,则称这个小区为“低碳小区”,否则称为“非低碳小区” .已知备选的5个居民小区中有三个非低碳小区,两个低碳小区.‎ ‎(Ⅰ)求所选的两个小区恰有一个为“非低碳小区”的概率;‎ ‎(Ⅱ)假定选择的“非低碳小区”为小区,调查显示其“低碳族”的比例为,数据如图1所示,经过同学们的大力宣传,三个月后,又进行了一次调查,数据如图2所示,问这时小区是否达到“低碳小区”的标准?‎ 以下是答案 一、选择题 ‎1、【答案】B ‎ 【解析】由,可得,故选B.‎ ‎2、【答案】A ‎ 【解析】由,得,,故选A.‎ ‎3、【答案】C ‎ 【解析】命题:得.命题:,得,∴:.故由且为真命题,得,选C.‎ ‎4、D ‎5、A ‎6、【答案】D ‎ 【解析】∵直角的三边成等差数列,∴可设 ‎,,,且,代入得,∴,∴,,,‎ ‎∴,故选D.‎ ‎7、【答案】B ‎ 【解析】不妨设直线的方程为,则,,∴,故选B.‎ ‎8、【答案】B ‎ 【解析】由可知,解得,故选B.‎ ‎9、BG ‎10、【答案】C ‎ 【解析】,,∴,选C.‎ 二、填空题 ‎11、.‎ ‎12、 ‎ ‎13、 解:甲、乙两人得分的中位数之和是.‎ ‎14、【答案】‎ ‎ 【解析】作出不等式组的平面区域, 由线性规划知识得最优解,故的最大值为 ‎15、【答案】2‎ ‎ 【解析】根据循环语句及程序运行和数列知识可知输出结果为2.‎ ‎16、【答案】‎ ‎ 【解析】∵,∴,即,解得.‎ ‎17、【答案】‎ ‎ 【解析】观察归纳可得.‎ 三、解答题 ‎18、解:⑴如图,设点,,,由、、三点共线,得与共线.又 ‎,,,得.同理,由、、三点共线可得 ‎.∵,∴,化简得点的轨迹方程为.‎ ‎ ⑵若,‎ ‎ ①设,,则,.由,得,∴,.代入,得.∴,即为椭圆的焦点. ‎ ‎ ‎ ‎ ②猜想:取椭圆的左焦点,则当点位于直线与椭圆的交点处时,周长最大为.‎ ‎ 证明如下:∵,∴的周长.…12分 ‎19、解:(Ⅰ)因为 ‎ ‎ , 分 所以函数的最小正周. ‎ ‎ (Ⅱ)依题意,[] ‎ ‎ . ‎ ‎ 因为 ,所以. ‎ ‎ 当,即时,取最大值;‎ 当,即,取最小值. ‎ ‎20、 (1) ‎ ‎⑵由,,得 ‎.∵的图象的对称轴为,,∴,又,∴当,即时,取最小值.‎ 故当时,不等式对一切恒成立.‎ ‎21、解:(Ⅰ)设三个“非低碳小区”为,两个“低碳小区”为 ‎ 用表示选定的两个小区,,‎ 则从5个小区中任选两个小区,所有可能的结果有10个,它们是,,,,,, ,,,. ‎ 用表示:“选出的两个小区恰有一个为非低碳小区”这一事件,则中的结果有6个,它们 是:,,, ,,. ‎ 故所求概率为. ‎ ‎(II)由图1可知月碳排放量不超过千克的成为“低碳族”. ‎ 由图2可知,三个月后的低碳族的比例为,‎ 所以三个月后小区达到了“低碳小区”标准. ‎