- 2.33 MB
- 2021-06-19 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
专题四 立体几何
第二讲 点、直线、平面之间的位置关系
高考导航
1. 利用平面的基本性质及线线、线面和面面位置关系的判定与性质定理对命题真假进行判断.
2.以棱柱、棱锥、棱台或其简单组合体为载体考查线线、线面与面面平行和垂直关系.
1.(2016·山东卷)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
[解析] 若直线a,b相交,设交点为P,则P∈a,P∈b.又a⊂α,b⊂β,所以P∈α,P∈β,故α,β相交.反之,若α,β相交,则a,b可能相交,也可能异面或平行.故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.
[答案] A
2.(2016·浙江卷)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( )
A.m∥l B.m∥n C.n⊥l D.m⊥n
[解析] 对于A,m与l可能平行或异面,故A错;对于B、D,m与n可能平行、相交或异面,故B、D错;对于C,因为n⊥β,l⊂β,所以n⊥l,故C正确.故选C.
[答案] C
3.(2017·全国卷Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
②当直线AB与a成60°角时,AB与b成60°角;
③直线AB与a所成角的最小值为45°;
④直线AB与a所成角的最大值为60°.
其中正确的是________.(填写所有正确结论的编号)
[解析] 过点C作直线a1∥a,b1∥b,则直线AC、a1、b1两两垂直.不妨分别以a1、b1、AC所在直线为x、y、 轴建立空间直角坐标系,取n1=(1,0,0)为a1的方向向量,n2=(0,1,0)为b1的方向向量,令A(0,0,1).可设B(cosθ,sinθ,0),则=(cosθ,sinθ,-1).当直线AB与a成60°角时,=,∴=,|sinθ|=,∴|cos〈n2,〉|=,即AB与b所成角也是60°.
∵|cos〈n1,〉|==≤,
∴直线AB与a所成角的最小值为45°.综上,②和③是正确的,①和④是错误的.故填②③.
[答案] ②③
4.(2017·全国卷Ⅱ)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.
(1)证明:直线CE∥平面PAB;
(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.
[解] (1)取PA的中点F,连接EF,BF.因为E是PD的中点,所以EF∥AD,EF=AD.
由∠BAD=∠ABC=90°得BC∥AD,又BC=AD,所以EF綊BC,四边形BCEF是平行四边形,CE∥BF,又BF⊂平面PAB,CE⊄平面PAB,故CE∥平面PAB.
(2)由已知得BA⊥AD,以A为坐标原点,的方向为x轴正方向,||为单位长,建立如图所示的空间直角坐标系A-xy ,则A(0,0,0),B(1,0,0),C(1,1,0),P(0,1,),=(1,0,-),=(1,0,0).
设M(x,y, )(00),则BD=.
依题意△ABD∽△DCB,所以=,即=.
又x>0,解得x=,故AB=,BD=,BC==3.
如图a所示,建立空间直角坐标系D-xy ,则D(0,0,0),B(,0,0),C(0,,0),E,A,所以=,=.
由(1)知平面BAD的一个法向量为n=(0,1,0).
设平面ADE的法向量为m=(x,y, ),
由得
令x=,得y=-, =-,
所以m=(,-,-).
所以cos〈n,m〉==-.
由图可知二面角B-AD-E的平面角为锐角,
所以二面角B-AD-E的余弦值为.