- 78.00 KB
- 2021-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二章 随机变量及其分布
滚动训练四(§2.1~§2.4)
一、选择题
1.10件产品中有3件次品,从中任取2件,可作为随机变量的是( )
A.取到产品的件数
B.取到正品的概率
C.取到次品的件数
D.取到次品的概率
考点 随机变量及离散型随机变量的概念
题点 随机变量的概念
答案 C
解析 A中取到产品的件数是一个常量而不是变量,B,D中的量也是一个定值,而C中取到次品的件数可能是0,1,2,是随机变量.
2.设随机变量ξ服从正态分布N(3,16),若P(ξ>c+2)=P(ξc+2)=P(ξ0,∴a与b同号,
∴ξ的取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,
∴ξ的分布列为
ξ
0
1
2
P
∴E(ξ)=0×+1×+2×=.
二、填空题
9.在一次三人象棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率为0.5,丙胜甲的概率为0.6,比赛顺序如下:第一局,甲对乙;第二局,第一局胜者对丙;第三局,第二局胜者对第一局败者;第四局,第三局胜者对第二局败者.则乙连胜四局的概率为________.
考点 相互独立事件的性质及应用
8
题点 独立事件与互斥事件的综合应用
答案 0.09
解析 乙连胜四局,即乙先胜甲,然后胜丙,接着再胜甲,最后再胜丙,∴所求概率为P=(1-0.4)×0.5×(1-0.4)×0.5=0.09.
10.一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则两人都未解决的概率是________,问题得到解决的概率是________.
考点 相互独立事件同时发生的概率计算
题点 求两个相互独立事件同时发生的概率
答案
解析 设“甲解决这道难题”为事件A,“乙解决这道难题”为事件B,则A,B相互独立.
所以两人都未解决的概率为P( )=×=.
问题得到解决的概率为P(A)+P(B)+P(AB)=1-P( )=1-=.
11.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p.若此人未能通过的科目数ξ的均值是2,则p=________.
考点 二项分布、两点分布的均值
题点 二项分布的均值
答案
解析 因为通过各科考试的概率为p,所以不能通过考试的概率为1-p,易知ξ~B(6,1-p),又E(ξ)=6(1-p)=2,解得p=.
三、解答题
12.篮球运动员比赛投篮,命中得1分,不中得0分,已知甲运动员投篮命中的概率为p,且各次投篮互不影响.
(1)若投篮1次的得分记为X,求方差D(X)的最大值;
(2)当(1)中D(X)取最大值时,求甲运动员投篮5次得4分的概率.
考点 三种常用分布的方差
题点 二项分布的方差
解 (1)依题意,得X的分布列为
X
0
1
P
1-p
p
8
∴E(X)=0×(1-p)+1×p=p,
D(X)=(0-p)2×(1-p)+(1-p)2×p=-2+,
∴当p=时,D(X)取得最大值,且最大值为.
(2)由(1)可知p=.记投篮5次的得分为Y,则Y~B,那么P(Y=4)=C×4×=,
则甲运动员投篮5次得4分的概率为.
13.某产品有4件正品和2件次品混在了一起,现要把这2件次品找出来,为此每次随机抽取1件进行测试,测试后不放回,直至次品全部被找出为止.
(1)求“第1次和第2次都抽到次品”的概率;
(2)设所要测试的次数为随机变量X,求X的分布列和均值.
考点 常见的几种均值
题点 与排列、组合有关的随机变量的均值
解 (1)设“第1次和第2次都抽到次品”为事件A,
则P(A)==.
(2)X的所有可能取值为2,3,4,5.
P(X=2)=,P(X=3)==,P(X=4)=+=,P(X=5)=+=.
X的分布列为
X
2
3
4
5
P
因此,E(X)=2×+3×+4×+5×=.
四、探究与拓展
14.如图所示,用A,B,C,D表示四类不同的元件连接成系统M.当元件A,B至少有一个正常工作且元件C,D至少有一个正常工作时,系统M正常工作.已知元件A,B,C,D正常工作的概率依次为0.5,0.6,0.7,0.8.则元件连接成的系统M正常工作的概率P(M)等于( )
8
A.0.752 B.0.988
C.0.168 D.0.832
考点 相互独立事件的性质及应用
题点 相互独立事件性质的应用
答案 A
解析 P(M)=[1-P( )][1-P( )]=0.752.
15.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为X,求X的分布列;
(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?
(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比.分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.
考点 离散型随机变量的均值的性质
题点 均值在实际中的应用
解 (1)X可能的取值为10,20,100,-200.
根据题意,有
P(X=10)=C×1×2=,
P(X=20)=C×2×1=,
P(X=100)=C×3×0=,
P(X=-200)=C×0×3=.
所以X的分布列为
X
10
20
100
-200
P
(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X
8
=-200)=.
所以“三盘游戏中至少有一盘出现音乐”的概率为
1-P(A1A2A3)=1-3=1-=.
因此,玩三盘游戏至少有一盘出现音乐的概率是.
(3)X的均值为
E(X)=10×+20×+100×-200×=-.
这表明,获得分数X的均值为负,
因此,多次游戏之后分数减少的可能性更大.
8
相关文档
- 高中数学选修2-2课堂达标效果检测 2021-06-212页
- 高中数学必修2模块检测2021-06-2110页
- 高中数学 1-1-2 导数的概念课件 新2021-06-2136页
- 2020高中数学 第一章 三角函数 阶2021-06-219页
- 高中数学选修1-2课件:1_《合情推理2021-06-2134页
- 高中数学选修2-2课件3_1_12021-06-2156页
- 2020高中数学 课时分层作业8 数列2021-06-215页
- 高中数学第6章(第9课时)不等式的证明2021-06-214页
- 高中数学:第二章《推理与证明》测试2021-06-215页
- 2012高中数学 2_3_1课时同步练习 2021-06-215页