- 97.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第三章 第23讲
1.(2014·浙江卷)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小(仰角θ为直线AP与平面ABC所成角).若AB=15 m,AC=25 m,∠BCM=30°,则tan θ的最大值是( D )
A. B. C. D.
解析:由题意,在△ABC中,sin∠ACB===,
则cos∠ACB=.作PH⊥BC,垂足为H,连接AH,如图所示.
设PH=x,则CH=x,在△ACH中,由余弦定理得
AH=
=,
tan∠PAH==,
故当=时,最大值为.
2.(2015·湖北卷)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100 m.
解析:依题意有AB=600,∠CAB=30°,∠CBA=180°-75°=105°,∠DBC=30°,DC⊥CB.∴∠ACB=45°,
在△ABC中,由=,得=,
有CB=300,在Rt△BCD中,CD=CB·tan 30°=100,则此山的高度CD=100 m.
3.(2011·上海卷)在相距2千米的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C之间的距离为千米.
解析:∠ACB=180°-75°-60°=45°,由正弦定理得==,AC= 千米.
4.(2013·江苏卷)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.
现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130 m/min,山路AC长为1 260 m,经测量,cos A=,cos C=.
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?
解析:(1)在△ABC中,因为cos A=,cos C=,所以sin A=,sin C=.
从而sin B=sin[π-(A+C)]=sin(A+C)=sin Acos C+cos Asin C=×+×=.
由=,得AB=×sin C=×=1 040(m).
所以索道AB的长为1 040 m.
(2)设乙出发t分钟后,甲、乙两游客距离为d m,此时,甲行走了(100+50t)m,乙距离
A处130t m,所以由余弦定理得d2=(100+50t)2+(130t)2-2×130t×(100+5t)×=200(37t2-70t+50),
因0≤t≤,即0≤t≤8,故当t=(min)时,甲、乙距离最短.
(3)由=,得BC=×sin A=×=500(m).
乙从B出发时,甲已走了50×(2+8+1)=550(m),还需走710 m才能到达C.
设步行的速度为v m/min,由题意得-3≤-≤3,
解得≤v≤,所以为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在(单位:m/min)范围内.