• 79.00 KB
  • 2021-06-24 发布

高中数学必修4教案:1_3三角函数的诱导公式(2)_doc

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎1. 3 三角函数的诱导公式<第二课时>‎ 班级 姓名 ‎ 学习目标:‎ ‎1、利用单位圆探究得到诱导公式五,六,并且概括得到诱导公式的特点。‎ ‎2、理解求任意角三角函数值所体现出来的化归思想。‎ ‎3、能初步运用诱导公式进行求值与化简。‎ 教学重点:‎ 诱导公式的探究,运用诱导公式进行求值与化简,提高对单位圆与三角函数关系的认识。‎ 教学难点:‎ 诱导公式的灵活应用 教学过程:‎ 一、复习:1.复习诱导公式一、二、三、四;‎ ‎2.对“函数名不变,符号看象限”的理解。‎ 二、新课: ‎ ‎1、 如图,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角-α的终边与角α的终边关于直线y=x对称,角-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y, cosα=x, cos(-α)=y, sin(-α)=x. ‎ 从而得到诱导公式五:‎ cos(-α)=sinα,‎ sin(-α)=cosα.‎ ‎2、提出问题 能否用已有公式得出+α的正弦、余弦与α的正弦、余弦之间的关系式?‎ ‎3、诱导公式六 Sin(+α)=cosα,‎ cos(+α)=-sinα.‎ ‎4、用语言概括一下公式五、六:‎ ‎±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号. 简记为“:函数名改变,符号看象限.”‎ 作用:利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.‎ ‎5、提出问题 ‎ 学了六组诱导公式后,能否进一步用语言归纳概括诱导公式的特点?‎ ‎(奇变偶不变,符号看象限.)‎ ‎6、示例应用 例1将下列三角函数转化为锐角三角函数。‎ ‎(1)sin (2)cos100º21′ (3)sin (4)tan324º32′‎ 例2、 证明(1)sin(-α)=-cosα ;(2)cos(-α)=-sinα.‎ 变式练习 ‎ 例3 化简 变式练习 化简 1、(1)‎ ‎ (2)‎ ‎2、已知sinα是方程5x2-7x-6=0的根,且α为第三象限角,‎ 求的值.‎ 三、小结 ‎ 应用诱导公式化简三角函数的一般步骤:‎ ‎1°用“- a”公式化为正角的三角函数;‎ ‎2°用“2kp + a”公式化为[0,2p]角的三角函数;‎ ‎3°用“p±a”或 “±α”公式化为锐角的三角函数 四、作业:‎ 习题1.3 B组第1题 ‎ ‎ 五、探究 ‎1、习题1.3 B组第2题 ‎2、‎