- 79.00 KB
- 2021-06-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1. 3 三角函数的诱导公式<第二课时>
班级 姓名
学习目标:
1、利用单位圆探究得到诱导公式五,六,并且概括得到诱导公式的特点。
2、理解求任意角三角函数值所体现出来的化归思想。
3、能初步运用诱导公式进行求值与化简。
教学重点:
诱导公式的探究,运用诱导公式进行求值与化简,提高对单位圆与三角函数关系的认识。
教学难点:
诱导公式的灵活应用
教学过程:
一、复习:1.复习诱导公式一、二、三、四;
2.对“函数名不变,符号看象限”的理解。
二、新课:
1、 如图,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角-α的终边与角α的终边关于直线y=x对称,角-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y, cosα=x, cos(-α)=y, sin(-α)=x.
从而得到诱导公式五:
cos(-α)=sinα,
sin(-α)=cosα.
2、提出问题
能否用已有公式得出+α的正弦、余弦与α的正弦、余弦之间的关系式?
3、诱导公式六
Sin(+α)=cosα,
cos(+α)=-sinα.
4、用语言概括一下公式五、六:
±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号. 简记为“:函数名改变,符号看象限.”
作用:利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.
5、提出问题
学了六组诱导公式后,能否进一步用语言归纳概括诱导公式的特点?
(奇变偶不变,符号看象限.)
6、示例应用
例1将下列三角函数转化为锐角三角函数。
(1)sin (2)cos100º21′ (3)sin (4)tan324º32′
例2、 证明(1)sin(-α)=-cosα ;(2)cos(-α)=-sinα.
变式练习
例3 化简
变式练习 化简 1、(1)
(2)
2、已知sinα是方程5x2-7x-6=0的根,且α为第三象限角,
求的值.
三、小结
应用诱导公式化简三角函数的一般步骤:
1°用“- a”公式化为正角的三角函数;
2°用“2kp + a”公式化为[0,2p]角的三角函数;
3°用“p±a”或 “±α”公式化为锐角的三角函数
四、作业:
习题1.3 B组第1题
五、探究
1、习题1.3 B组第2题
2、
相关文档
- 高中数学必修4教案:8_备课资料(2_4_22021-06-243页
- 高中数学必修4教案:2_1平面向量的实2021-06-244页
- 三角函数的诱导公式教案72021-06-243页
- 高中数学必修4教案:3_备课资料(3_1_32021-06-242页
- 高中数学必修4教案:2_示范教案(3_1_22021-06-2416页
- 高中数学必修4教案:1_备课资料(1_1_12021-06-241页
- 高中数学必修4教案:6_示范教案(2_3_42021-06-248页
- 高中数学必修4教案:3_1_3二倍角的正2021-06-244页
- 高中数学必修4教案:1_4_2正弦函数,余2021-06-248页
- 高中数学必修4教案:9_示范教案(2_5_12021-06-248页