- 246.50 KB
- 2021-06-30 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
新课标下高考数 题中以三角形中的不等和最值问题为载体,不仅仅需要用到三角变换、正余弦定理,往往还需要涉及基本不等式以及求函数值域;
纵观近几年高考对三角形的考查,三角形中的不等和最值问题已成为高考命题的一个热点.重点放在正余弦定理与三角函数性质、基本不等式和向量知识的结合上;要求 生有较强的逻辑思维能力、三角恒等变形能力以及准确的计算能力,才能顺利解答.从实际教 看,这部分知识综合性大,涉及知识面广, 生解决感觉较困难,分析原因,除了这类题目本身有一定难度,主要是 生的三角恒等变形能力普遍较弱,还有就是没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.
1 三角形中的不等关系
三角形中的不等关系主要有 1.任意两边之和大于第三边,任意两边之差小于第三边;2.任一角都大于00而小于1800,任意两角之和也是大于00而小于1800;3.设角A是一三角形的内角,则;4.在锐角三角形中, 任意两角之和也是大于900而小于1800;5.在同一三角形中大边对大角,大角对大边等等.运用好这些不等关系,是解决与三角形有关问题的关键.
例1钝角三角形的三边为, , ,其最大角不超过,则的取值范围是( )
A. B. C. D.
【答案】B
2 三角形的不等与三角变换
解三角形主要用到四点 一是正余弦定理;二是大边对大角,大角对大边;三是设角A是一三角形的内角,则;四是三角形的面积公式.用三恒等变形公式按目的进行变形化简是关键.
例2【2018届江西省 12联盟高三教育质量检测】已知的内角、、
的对边分别是、、,且 ,若,则的取值范围为( )
A. B. C. D.
【答案】B
【解析】∵
∴
∴
∴,
∴
∴,又
∴的取值范围为
故选 B.
3 三角形中不等与向量
以向量为载体 描述三角形中的条件,然后解三角形,是近年是常见高考题型,这种题目不仅要求 生熟悉应用正余弦理解三角形,同时还要求 生有不错的向量知识才能读懂题目,从而顺利作答.
例3已知向量a,b满足,则的最小值是___________,最大值是______。 | | ]
【答案】 4
4.三角形中最值与基本不等式
对于三角形中的最值,很多时间同时也考查基本不等式,不仅要注意正余弦定理的应用,三角恒等变形,同时还要注意构造使用基本不等式的条件,以便使用基本不等式解决问题.
例4在△ABC中,角A、B、C所对的边分别为a、b、c,且
(1)判断△ABC的形状,并加以证明;
(2)当c = 1时,求△ABC周长的最大值.
【答案】(1)见解析;(2)ABC周长的最大值为 .
[ _ _ ]
∴c2=a2+b2 即△ABC为直角三角形
(2)由(1)知△ABC为直角三角形,c为斜边
当c=1时设另两直角边长分别为a, b
a2+b2=1
∵
∴△ABC周长=1+a+b
当且仅当a=b即 △ABC为等腰直角三角形时取等号.
∴△ABC周长的最大值为 [ ]
5 三角形中的最值与函数
对于三角形中的最值,不仅可能用到基本不等式 求解,很多时候也要用到三角函数的性质,或是求函数的最值的方法 如单调性法,导数法,图象法等等.[ ]
例5【新疆维吾尔自治区普通高中 业水平】甲船在A处.乙船在甲船正南方向距甲船20海里的B处,乙船以每小时10海里的速度向正北方向行驶,而甲船同时以每小时8海里的速度由A处向南偏西60o方向行驶,问经过多少小时后,甲.乙两船相距最近?
【答案】小时后,甲乙两船相距最近. !
【反思提升】综合上面的五种类型,解决三解形中的不等与最值问题,涉及到三角函数知识和较多的数 思想、方法;解三角形主要知识是正、余弦定理,同时三角恒等变形能力以及计算能力和按照目的进行分析问题、解决问题的能力要求也是比较高的;不等关系和最值处理的常用方法 利用三角形中的有关结论转化为基本不等式 解决或是转化为函数的最值 加以解决.