- 48.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
高考必考题突破讲座(三)
数列、不等式及推理与证明
[解密考纲]数列、不等式是高中数学的主干知识,涉及函数思想的渗透和逻辑推理及数学运算.高考中常以数列的计算、推理和不等式的放缩变形为载体,考查学生的逻辑推理和运算能力.
1.(2018·湖南长沙统考)已知数列{an}为等差数列,其中a2+a3=8,a5=3a2.
(1)求数列{an}的通项公式;
(2)记bn=,设bn的前n项和为Sn.求最小的正整数n,使得Sn>.
解析 (1)设等差数列{an}的公差为d,
依题意有解得
故{an}的通项公式为an=2n-1,n∈N*.
(2)因为bn==-,
所以Sn=++…+
=1-,
令1->,解得n>1 008,故取n=1 009.
2.(2018·江西南昌模拟)已知等差数列{an}的前n项和为Sn,且a1=1,S3+S4=S5.
(1)求数列{an}的通项公式;
(2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.
解析 (1)设等差数列{an}的公差为d,
由S3+S4=S5,得a1+a2+a3=a5,即3a2=a5,
所以3(1+d)=1+4d,解得d=2.
∴an=1+(n-1)×2=2n-1.
(2)由(1)可得bn=(-1)n-1·(2n-1).
∴T2n=1-3+5-7+…+(2n-3)-(2n-1)
=(-2)×n=-2n.
3.(2018·东北三省四校模拟)已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(1)求数列{an}的通项公式;
(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.
解析 (1)依题意
得
解得∴an=2n+1.
(2)∵=3n-1,∴bn=an·3n-1=(2n+1)·3n-1,
∴Tn=3+5×3+7×32+…+(2n+1)×3n-1,
3Tn=3×3+5×32+…+2×3n-1+(2n+1)×3n,两式相减,得
-2Tn=3+2×3+2×32+…+2×3n-1-(2n+1)×3n
=3+2×-(2n+1)×3n=-2n×3n,∴Tn=n·3n.
4.已知二次函数y=f(x)的图象经过坐标原点,其导函数为f′(x)=6x-2,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=,试求数列{bn}的前n项和Tn.
解析 (1)设二次函数f(x)=ax2+bx(a≠0),
则f′(x)=2ax+b.
由于f′(x)=6x-2,得a=3,b=-2,所以f(x)=3x2-2x.
又因为点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
所以Sn=3n2-2n.
当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a1=S1=3×12-2×1=6×1-5,也适合上式,
所以an=6n-5(n∈N*).
(2)由(1)得bn==
=·,
故Tn=
==.
5.已知数列{an}满足a1=3,-=1,n∈N*.
(1)求数列{an}的通项公式;
(2)设bn=log2,数列{bn}的前n项和为Sn,求使Sn<-4的最小自然数n.
解析 (1)由-=1,n∈N*,
知数列{}是以2为首项,1为公差的等差数列,
所以=2+n-1=n+1,所以an=n2+2n,
故数列{an}的通项公式为an=n2+2n.
(2)bn=log2=log2=log2(n+1)-log2(n+2),
则Sn=b1+b2+…+bn=log22-log23+log23-log24+…+log2(n+1)-log2(n+2)=1-log2(n+2),
由Sn<-4,得1-log2(n+2)<-4,解得n>30,
故满足Sn<-4的最小自然数n为31.
6.设a1,a2,a3,a4是各项均为正数且公差为d(d≠0)的等差数列.
(1)求证:2a1,2a2,2a3,2a4依次成等比数列;
(2)是否存在a1,d使得a1,a,a,a依次成等比数列?并说明理由.
解析 (1)因为=2an+1-an=2d(n=1,2,3)是同一个常数,所以2a1,2a2,2a3,2a4依次构成等比数列.
(2)假设存在a1,d满足条件.令a1+d=a,则a1,a2,a3,a4分别为a-d,a,a+d,a+2d(a>d,a>-2d,d≠0).
假设存在a1,d使得a1,a,a,a依次构成等比数列,
则a4=(a-d)(a+d)3,且(a+d)6=a2(a+2d)4,
令t=,则1=(1-t)(1+t)3,
且(1+t)6=(1+2t)4,
化简得t3+2t2-2=0(*),且t2=t+1.
将t2=t+1代入(*)式,
t(t+1)+2(t+1)-2=t2+3t=t+1+3t=4t+1=0,
则t=-.
显然t=-不是上面方程的解,矛盾,所以假设不成立,
因此不存在a1,d使得a1,a,a,a依次构成等比数列.