• 222.50 KB
  • 2021-07-01 发布

【数学】2019届高考一轮复习北师大版理8-8关注立体几何中的动态问题学案

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎             关注立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等.‎ 一、常见题目类型 ‎ (2018·金华十校高考模拟)在正方体ABCDA1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为,则点P的轨迹是(  )‎ A.圆的一部分        B.椭圆的一部分 C.抛物线的一部分 D.双曲线的一部分 ‎【解析】 把MN平移到平面A1B1C1D1中,直线D1P与MN所成角为θ,直线D1P与MN所成角的最小值是直线D1P与平面A1B1C1D1所成角,即原问题转化为:直线D1P与平面A1B1C1D1所成角为,点P在平面A1B1C1D1的投影为圆的一部分,‎ 因为点P是△A1C1D内的动点(不包括边界),‎ 所以点P的轨迹是椭圆的一部分.故选B.‎ ‎【答案】 B ‎ (2018·浙江名校协作体高三联考)已知平面ABCD⊥平面ADEF,AB⊥AD,CD⊥AD,且AB=1,AD=CD=2.ADEF是正方形,在正方形ADEF内部有一点M,满足MB,MC与平面ADEF所成的角相等,则点M的轨迹长度为(  )‎ A.    B. C.π    D.π ‎【解析】 根据题意,以D为原点,分别以DA,DC,DE所在直线为x,y,z轴,建立空间直角坐标系Dxyz,如图1所示,则B(2,1,0),C(0,2,0),设M(x,0,z),易知直线MB,MC与平面ADEF所成的角分别为∠AMB,∠DMC,均为锐角,且∠AMB=∠DMC,所以sin∠AMB=sin∠DMC⇒=,即2MB=MC,因此2=,整理得+z2=,由此可得,点M在正方形ADEF内的轨迹是以点O为圆心,半径为的圆弧M1M2,如图2所示,易知圆心角∠M1OM2=,所以lM1M2=×=π.故选C.‎ ‎【答案】 C ‎ (2018·杭州市高考模拟)‎ 在等腰直角△ABC中,AB⊥AC,BC=2,M为BC中点,N为AC中点,D为BC边上一个动点,△ABD沿AD翻折使BD⊥DC,点A在面BCD上的投影为点O,当点D在BC上运动时,以下说法错误的是(  )‎ A.线段NO为定长 B.|CO|∈[1,)‎ C.∠AMO+∠ADB>180° D.点O的轨迹是圆弧 ‎【解析】 如图所示,对于A,△AOC为直角三角形,ON为斜边AC上的中线,ON=AC为定长,即A正确;对于B,D在M时,AO=1,CO=1,所以|CO|∈[1,),即正确;对于D,由A可知,点O的轨迹是圆弧,即D正确,故选C.‎ ‎【答案】 C 求解立体几何中的轨迹问题时,首先要探究点的轨迹的形成过程,同时还要注意动点的性质以及点、线、面之间的位置关系,若动点的性质满足解析几何中圆锥曲线的定义,也可借助定义求出轨迹.  ‎ 二、巩固提高 ‎(1)(2018·台州市高考模拟)如图,在棱长为2的正四面体ABCD中,E、F分别为直线AB、CD上的动点,且|EF|=.若记EF中点P的轨迹为L,则|L|等于________.(注:|L|表示L的测度,在本题,L为曲线、平面图形、空间几何体时,|L|分别对应长度、面积、体积)‎ ‎(2)(2018·宁波诺丁汉大学附中高三期中考试)如图,矩形ABCD中,AB=1,BC=,将△ABD沿对角线BD向上翻折,若翻折过程中AC长度在内变化,则点A所形成的运动轨迹的长度为________.‎ 解析:(1)如图,当E为AB中点时,F分别在C,D处,满足|EF|=,‎ 此时EF的中点P在EC,ED的中点P1,P2的位置上;当F为CD中点时,E分别在A,B处,满足|EF|=,此时EF的中点P在BF,AF的中点P3,P4的位置上,连接P1P2,P3P4相交于点O,则四点P1,P2,P3,P4共圆,圆心为O,圆的半径为,则EF中点P的轨迹L为以O为圆心,以为半径的圆,其测度|L|=2π×=π.‎ ‎(2)过A作AE⊥BD,垂足为E,连接CE,A′E.‎ 因为矩形ABCD中,AB=1,BC=,‎ 所以AE=,CE=.‎ 所以A点的轨迹为以E为圆心,以为半径的圆弧.∠A′EA为二面角ABDA′的平面角.‎ 以E为原点,以EB,EA′所在直线为x轴,y轴建立如图所示空间直角坐标系Exyz,设∠A′EA=θ,‎ 则A,C,‎ 所以AC==,‎ 所以≤ ≤,解得0≤cos θ≤,‎ 所以60°≤θ≤90°,所以A点轨迹的圆心角为30°,‎ 所以A点轨迹的长度为·=.‎ 答案:(1)π (2) π