- 71.50 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课时分层作业(六) 公式二、公式三和公式四
(建议用时:40分钟)
[学业达标练]
一、选择题
1.sin2150°+sin2135°+2sin 210°+cos2225°的值是( )
【导学号:84352057】
A. B.
C. D.
A [因为sin 150°=sin(180°-30°)=sin 30°=,sin 135°=sin(180°-45°)=sin 45°=,
sin 210°=sin(180°+30°)=-sin 30°=-,cos 225°=cos(180°+45°)=-cos 45°=-,
所以原式=2+2+2×+2=+-1+=.]
2.sin2(2π-α)+cos(π+α)cos(π-α)+1的值是( )
A.1 B.2
C.0 D.-1
B [原式=sin2α+(-cos α)·(-cos α)+1
=sin2α+cos2α+1=1+1=2.]
3.已知600°角的终边上有一点P(a,-3),则a的值为( )
【导学号:84352058】
A. B.-
C. D.-
B [由题意得tan 600°=-,
又因为tan 600°=tan(360°+240°)
=tan 240°=tan(180°+60°)
=tan 60°=,
所以-=,所以a=-.]
6
4.设sin 160°=a,则cos 340°的值是( )
A.1-a2 B.
C.- D.±
B [因为sin 160°=a,所以sin(180°-20°)=sin 20°=a,而cos 340°=cos(360°-20°)=cos 20°=.]
5.已知sin=,则sin的值为( )
A. B.-
C. D.-
C [sin=sin
=-sin
=sin=.]
二、填空题
6.可化简为________.
1-sin θ [原式====1-sin θ.]
7.已知cos(508°-α)=,则cos(212°+α)=________.
[由于cos(508°-α)=cos(360°+148°-α)
=cos(148°-α)=,
所以cos(212°+α)=cos(360°+α-148°)
=cos(α-148°)=cos(148°-α)=.]
8.已知sin(α+π)=,且sin αcos α<0,则=________.
【导学号:84352059】
- [因为sin(α+π)=-sin α=,
且sin αcos α<0,
所以sin α=-,cos α=,tan α=-,
6
所以=
==-.]
三、解答题
9.已知tan(7π+α)=2,
求的值.
[解] ∵tan(7π+α)=2,∴tan α=2,
∴
====2.
10.已知f(α)=.
(1)化简f(α);
(2)若α是第三象限角,且sin(α-π)=,求f(α)的值;
(3)若α=-,求f(α)的值.
【导学号:84352060】
[解] (1)f(α)=-=-cos α.
(2)∵sin(α-π)=-sin α=,
∴sin α=-.
又α是第三象限角,
∴cos α=-,∴f(α)=.
(3)∵-=-6×2π+,
∴f=-cos
=-cos=-cos=-.
[冲A挑战练]
1.在△ABC中,给出下列四个式子:
6
①sin(A+B)+sin C;
②cos(A+B)+cos C;
③sin(2A+2B)+sin 2C;
④cos(2A+2B)+cos 2C.
其中为常数的是( )
A.①③ B.②③
C.①④ D.②④
B [①sin(A+B)+sin C=2sin C;
②cos(A+B)+cos C=-cos C+cos C=0;
③sin(2A+2B)+sin 2C
=sin[2(A+B)]+sin 2C
=sin[2(π-C)]+sin 2C
=sin(2π-2C)+sin 2C
=-sin 2C+sin 2C=0;
④cos(2A+2B)+cos 2C
=cos[2(A+B)]+cos 2C
=cos[2(π-C)]+cos 2C
=cos(2π-2C)+cos 2C
=cos 2C+cos 2C
=2cos 2C.
故选B.]
2.已知a=tan,b=cos,c=sin,则a,b,c的大小关系是( )
A.a>b>c B.b>a>c
C.b>c>a D.c>a>b
B [a=-tan=-tan=-,
b=cos=cos=,
c=-sin=-sin=-,
∴b>a>c.]
3.设f(x)=asin(πx+α)+bcos(πx+β)+7,α,β均为实数,若f(2 008)=8,则f(2 017)的值为________.
6 [因为f(2 008)=asin(2 008π+α)+bcos(2 008π+β)+7=asin α+bcos β
6
+7,
所以asin α+bcos β+7=8,
所以asin α+bcos β=1,
又f(2 017)=asin(2 017π+α)+bcos(2 017 π+β)+7=-asin α-bcos β+7=-1+7=6.
所以f(2 017)=6.]
4.已知f(x)=则f+f的值为________.
【导学号:84352061】
-2 [f=sin=sin
=sin=,
f=f-1=f-1=f-2
=f-2
=sin-2=-sin-2=--2=-,
所以f+f=-=-2.]
5.在△ABC中,若sin(2π-A)=-sin(π-B),cos A=-cos(π-B),求△ABC的三个内角.
【导学号:84352062】
[解] 由条件得sin A=sin B,cos A=cos B,
平方相加得2cos2A=1,cos A=±,
又A∈(0,π),∴A=或π.
当A=π时,cos B=-<0,
∴B∈,
∴A,B均为钝角,不合题意,舍去.
∴A=,cos B=,
∴B=,∴C=π.
6
综上所述,A=,B=,C=π.
6
相关文档
- 2019高中数学 学考复习23 等差数列2021-07-012页
- 高中数学 1-7-1 定积分在几何中的2021-07-0138页
- 【数学】云南省玉溪市普通高中20212021-07-0116页
- 高中数学必修1函数性质测试题2021-07-015页
- 高中数学人教a版选修4-1同步辅导与2021-07-0132页
- 高中数学(人教A版)必修4:1-4-3同步试2021-07-015页
- 江西省八所重点高中2012届高考数学2021-07-0110页
- 高中数学第三章不等式3-3二元一次2021-07-016页
- 四川省绵阳市高中2017级第二次诊断2021-07-0113页
- 高中数学北师大版新教材必修一课时2021-07-017页