- 2.25 MB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
【考向解读】
1.以选择题、填空题形式考查圆锥曲线的方程、几何性质(特别是离心率).2.以解答题形式考查直线与圆锥曲线的位置关系(弦长、中点等).
【命题热点突破一】 圆锥曲线的定义与标准方程
1.圆锥曲线的定义
(1)椭圆 |PF1|+|PF2|=2a(2a>|F1F2|);
(2)双曲线 ||PF1|-|PF2||=2a(2a<|F1F2|);
(3)抛物线 |PF|=|PM|,点F不在直线l上,PM⊥l于M.
2.求解圆锥曲线标准方程“先定型,后计算”
所谓“定型”,就是曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.
例1 (2017·北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.
(1)求椭圆C的方程;
(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证 △BDE与△BDN的面积之比为4∶5.
【解析】
(2)设M(m,n),则D(m,0),N(m,-n),
由题设知m≠±2,且n≠0.
直线AM的斜率 AM=,
故直线DE的斜率 DE=-,
所以直线DE的方程为y=-(x-m),
直线BN的方程为y=(x-2).
联立解得点E的纵坐标yE=-.
由点M在椭圆C上,得4-m2=4n2,所以yE=-n.
又S△BDE=|BD|·|yE|=|BD|·|n|,
S△BDN=|BD|·|n|,
所以△BDE与△BDN的面积之比为4∶5.学
【变式探究】【2016高考浙江理数】已知椭圆C1 +y2=1(m>1)与双曲线C2 –y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m1 D.mb>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为( )
A.+=1 B.+y2=1
C.+=1 D.+=1
(2)已知双曲线-=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】(1)A (2)D
(2)双曲线-=1的渐近线方程为y=±x,又渐近线过点(2,),所以=,即2b=a,①
抛物线y2=4x的准线方程为x=-,
由已知,得=,即a2+b2=7,②
联立①②解得a2=4,b2=3,
所求双曲线的方程为-=1,选D.
【命题热点突破二】 圆锥曲线的几何性质
1.椭圆、双曲线中,a,b,c之间的关系
(1)在椭圆中 a2=b2+c2,离心率为e==;
(2)在双曲线中 c2=a2+b2,离心率为e==.
2.双曲线-=1(a>0,b>0)的渐近线方程为
y=±x.注意离心率e与渐近线的斜率的关系.
例2、(2017·全国卷Ⅲ)已知抛物线C y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明 坐标原点O在圆M上;
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
【解析】
(1)证明 设l x=my+2,A(x1,y1),B(x2,y2),
联立得y2-2my-4=0,
Δ=4m2+16恒大于0,y1+y2=2m,y1y2=-4.
·=x1x2+y1y2
=(my1+2)(my2+2)+y1y2
=(m2+1)y1y2+2m(y1+y2)+4
=-4(m2+1)+2m·2m+4=0,
所以⊥,即O在圆M上.学
【变式探究】【2016高考新课标3理数】已知为坐标原点,是椭圆 的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为( )
(A) (B) (C) (D)
【答案】A
【解析】由题意设直线的方程为,分别令与得,.设OE的中点为N,则,则,即
,整理,得,所以椭圆C的离心率,故选A.
【变式探究】 (1)椭圆Γ +=1(a>b>0)的左,右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.
(2)(2015·西北工业大学附中四模)已知双曲线-=1的左、右焦点分别为F1、F2,过F1作圆x2+y2=a2的切线分别交双曲线的左、右两支于点B、C,且|BC|=|CF2|,则双曲线的渐近线方程为( )
A.y=±3x B.y=±2x
C.y=±(+1)x D.y=±(-1)x
【答案】(1)-1 (2)C
(2)由题意作出示意图,
易得直线BC的斜率为,
cos∠CF1F2=,
又由双曲线的定义及|BC|=|CF2|可得|CF1|-|CF2|=|BF1|=2a,
|BF2|-|BF1|=2a⇒|BF2|=4a,
故cos∠CF1F2==⇒b2-2ab-2a2=0⇒()2-2()-2=0⇒=1+,故双曲线的渐近线方程为y=±(+1)x. 学
【感悟提升】(1)明确圆锥曲线中a,b,c,e各量之间的关系是求解问题的关键.
(2)在求解有关离心率的问题时,一般并不是直接求出c和a的值,而是根据题目给出的椭圆或双曲线的几何特点,建立关于参数c,a,b的方程或不等式,通过解方程或不等式求得离心率的值或范围.
【变式探究】
(1)设F1,F2分别是椭圆+=1 (a>b>0)的左,右焦点,若在直线x=上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是( )
A. B.
C. D.
(2)设双曲线-=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D,若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是( )
A.(-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
C.(-,0)∪(0,)
D.(-∞,-)∪(,+∞)
【答案】(1)D (2)A
即所求的椭圆离心率的取值范围是.
(2)由题作出图象如图所示.
∵ AC==,
∴ BD=-.
∴lBD y-=-(x-c),
即y=-x++,
lCD y+=(x-c),
即y=x--.
∴xD=c+.
∴点D到BC的距离为.
∴b2,∴0<<1.∴0<<1. 学*
【命题热点突破三】 直线与圆锥曲线
判断直线与圆锥曲线公共点的个数或求交点问题有两种常用方法
(1)代数法 即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(或x
)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;
(2)几何法 即画出直线与圆锥曲线的图象,根据图象判断公共点个数.
例3、【2017课标1,理10】已知F为抛物线C y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
A.16 B.14 C.12 D.10
【答案】A
如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到直线l x=-的距离为3.
(1)求椭圆的标准方程;
(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若|PC|=2|AB|,求直线AB的方程.
【解析】(1)由题意,得=且c+=3,
解得a=,c=1,则b=1,
所以椭圆的标准方程为+y2=1.
若 =0,则线段AB的垂直平分线为y轴,与直线l平行,不合题意.
从而 ≠0,故直线PC的方程为
y+=-,
则P点的坐标为,
从而|PC|=.
因为|PC|=2|AB|,
所以=,
解得 =±1.
此时直线AB的方程为y=x-1或y=-x+1. 学
【特别提醒】解决直线与圆锥曲线问题的通法是联立方程,利用根与系数的关系,设而不求思想,弦长公式等简化计算;涉及中点弦问题时,也可用“点差法”求解.
【变式探究】
(1)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|等于( )
A. B.2
C.6 D.4
(2)已知椭圆E +=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
【答案】 (1)D (2)D
(2)设A(x1,y1),B(x2,y2),代入椭圆的方程有,
+=1,+=1,
两式相减得,+=0.
∵线段AB的中点坐标为(1,-1),
∴x1+x2=2,y1+y2=-2代入上式得
=.
∵直线AB的斜率为=,
∴=⇒a2=2b2,
∵右焦点为F(3,0),
∴a2-b2=c2=9,
解得a2=18,b2=9,
又此时点(1,-1)在椭圆内,
∴椭圆方程为+=1.
【高考真题解读】
1.【2017课标1,理10】已知F为抛物线C y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为
A.16 B.14 C.12 D.10
【答案】A
【解析】设,直线的方程为,联立方程
,得,∴ ,同理直线与抛物线的交点满足,由抛物线定义可知
,当且仅当(或)时,取等号.
2.【2017课标II,理9】若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为( )
A.2 B. C. D.
【答案】A
3.【2017浙江,2】椭圆的离心率是
A. B. C. D.
【答案】B
【解析】,选B.
4.【2017天津,理5】已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为
(A) (B)(C)(D)
【答案】B
【解析】由题意得 ,选B. 学
5.【2017北京,理9】若双曲线的离心率为,则实数m=_________.[ 学 ]
【答案】2
【解析】 ,所以 ,解得 .
6.【2017课标1,理】已知双曲线C (a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________.
【答案】
在中, ,代入计算得,即,
由得,
所以.
7.【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则 。
【答案】6
8.【2017课标3,理5】已知双曲线C (a>0,b>0)的一条渐近线方程为,且与椭圆有公共焦点,则C的方程为
A. B. C. D.
【答案】B
【解析】双曲线C (a>0,b>0)的渐近线方程为 ,
椭圆中 ,椭圆,即双曲线的焦点为 ,
据此可得双曲线中的方程组 ,解得 ,
则双曲线 的方程为 .
故选B. 学
9.【2017山东,理14】在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为 .
【答案】
1. 【2016高考新课标1卷】已知方程表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )
(A) (B) (C) (D)
【答案】A
【解析】由题意知 双曲线的焦点在轴上,所以,解得,因为方程表示双曲线,所以,解得,所以的取值范围是,故选A.
2.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线 上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )
(A) (B) (C) (D)1
【答案】C
【解析】设(不妨设),则
,故选C.
3.【2016高考新课标2理数】已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为( )
(A) (B) (C) (D)2
【答案】A
4.【2016高考浙江理数】已知椭圆C1 +y2=1(m>1)与双曲线C2 –y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则( )
A.m>n且e1e2>1 B.m>n且e1e2<1 C.m1 D.m0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形的ABCD的面积为2b,则双曲线的方程为( )
(A)(B)(C)(D)
【答案】D
9.【2016高考江苏卷】如图,在平面直角坐标系中,是椭圆 的右焦点,直线 与椭圆交于两点,且,则该椭圆的离心率是 ▲ .
【答案】
【解析】由题意得,因此
10.【2016高考天津理数】设抛物线,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为,则p的值为_________.
【答案】
【解析】抛物线的普通方程为,,,
又,则,由抛物线的定义得,所以,则,
由得,即,
所以,,
所以,解得.学
11.【2016高考山东理数】已知双曲线E (a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是_______.
【答案】2
12.【2016年高考北京理数】双曲线(,)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点,若正方形OABC的边长为2,则_______________.
【答案】2
【解析】∵是正方形,∴,即直线方程为,此为双曲线的渐近线,因此,又由题意,∴,.故填 2.
13.【2016高考江苏卷】在平面直角坐标系xOy中,双曲线的焦距是________▲________.
【答案】
【解析】。焦距为2c
故答案应填 。
14.【2016高考山东理数】(本小题满分14分)
平面直角坐标系中,椭圆C 的离心率是,抛物线E 的焦点F是C的一个顶点.
(I)求椭圆C的方程;
(II)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证 点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求 的最大值及取得最大值时点P的坐标.
【答案】(Ⅰ);(Ⅱ)(i)见解析;(ii)的最大值为,此时点的坐标为
【解析】
(Ⅱ)(Ⅰ)设,由可得,
所以直线的斜率为,
因此直线的方程为,即.
设,联立方程
得,
由,得且,
因此,
将其代入得,
因为,所以直线方程为.
联立方程,得点的纵坐标为,
即点在定直线上.
令,则,
当,即时,取得最大值,此时,满足,
所以点的坐标为,因此的最大值为,此时点的坐标为.学
15.【2016高考江苏卷】(本小题满分10分)
如图,在平面直角坐标系xOy中,已知直线,抛物线
(1)若直线l过抛物线C的焦点,求抛物线C的方程;
(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.
①求证 线段PQ的中点坐标为;
②求p的取值范围.
【答案】(1)(2)①详见解析,②
【解析】
(2)设,线段PQ的中点
因为点P和Q关于直线对称,所以直线垂直平分线段PQ,
于是直线PQ的斜率为,则可设其方程为
①由消去得
因为P 和Q是抛物线C上的相异两点,所以
从而,化简得.
方程(*)的两根为,从而
因为在直线上,所以
因此,线段PQ的中点坐标为
16.【2016高考天津理数】(本小题满分14分)
设椭圆()的右焦点为,右顶点为,已知,其中 为原点,为椭圆的离心率.
(Ⅰ)求椭圆的方程;
(Ⅱ)设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率的取值范围.
【答案】(Ⅰ)(Ⅱ)
【解析】(Ⅰ)解 设,由,即,可得,又,所以,因此,所以椭圆的方程为.
(Ⅱ)解 设直线的斜率为(),则直线的方程为.
设,由方程组,消去,整理得.
解得,或,由题意得,从而.
在中,,即,
化简得,即,解得或.
所以,直线的斜率的取值范围为.学 .
17.【2016高考新课标3理数】已知抛物线 的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.
(I)若在线段上,是的中点,证明;
(II)若的面积是的面积的两倍,求中点的轨迹方程.
【答案】(Ⅰ)见解析;(Ⅱ).
【解析】由题设.设,则,且
.
记过两点的直线为,则的方程为. .....3分
(Ⅰ)由于在线段上,故.
记的斜率为,的斜率为,则,
所以. ......5分
18.【2016高考浙江理数】(本题满分15分)如图,设椭圆(a>1).
(I)求直线y= x+1被椭圆截得的线段长(用a、 表示);
(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值
范围.
【答案】(I);(II).
【解析】
(Ⅱ)假设圆与椭圆的公共点有个,由对称性可设轴左侧的椭圆上有两个不同的点,,满足
.
记直线,的斜率分别为,,且,,.
由(Ⅰ)知,,,
故,
所以.
由于,,得,
因此, ①
因为①式关于,的方程有解的充要条件是,
所以.
因此,任意以点为圆心的圆与椭圆至多有个公共点的充要条件为,
由得,所求离心率的取值范围为.学
19.【2016高考新课标2理数】已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,.
(Ⅰ)当时,求的面积;
(Ⅱ)当时,求的取值范围.
【答案】(Ⅰ);(Ⅱ).
(Ⅱ)由题意,,.
将直线的方程代入得.
由得,故.
由题设,直线的方程为,故同理可得,
由得,即.
当时上式不成立,
因此.等价于,
即.由此得,或,解得.
因此的取值范围是.
20.【2016年高考北京理数】(本小题14分)
已知椭圆C ()的离心率为 ,,,,的面积为1.
(1)求椭圆C的方程;
(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.
求证 为定值.
【答案】(1);(2)详见解析.
(Ⅱ)由(Ⅰ)知,,
设,则.
当时,直线的方程为.
令,得,从而.
直线的方程为.
令,得,从而.
所以
.
当时,,
所以.
综上,为定值. 学
21.【2016年高考四川理数】(本小题满分13分)
已知椭圆E 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线与椭圆E有且只有一个公共点T.
(Ⅰ)求椭圆E的方程及点T的坐标;
(Ⅱ)设O是坐标原点,直线l’平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明 存在常数,使得,并求的值.
【答案】(Ⅰ),点T坐标为(2,1);(Ⅱ).
(II)由已知可设直线 的方程为,
有方程组 可得
所以P点坐标为( ),.
由②得.
所以 ,
同理,
所以
.学
故存在常数,使得.
22. 【2016高考上海理数】(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.
双曲线的左、右焦点分别为,直线过且与双曲线交于两点。
(1)若的倾斜角为,是等边三角形,求双曲线的渐近线方程;
(2)设,若的斜率存在,且,求的斜率.
【答案】(1).(2).
(2)由已知,,.
设,,直线.显然.
由,得.
因为与双曲线交于两点,所以,且.
设的中点为.
由即,知,故.
而,,,
所以,得,故的斜率为.
1.(2015·重庆,10)设双曲线-=1(a>0,b>0)的右焦点为F,右顶点为A,过F作AF的垂线与双曲线交于B,C两点,过B,C分别作AC,AB的垂线,两垂线交于点D,若D到直线BC的距离小于a+,则该双曲线的渐近线斜率的取值范围是( )
A. (-1,0)∪(0,1)
B.(-∞,-1)∪(1,+∞)
C.(-,0)∪(0,)
D.(-∞,-)∪(,+∞)
【答案】A
2.(2015·陕西,14)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=________.
【答案】2
【解析】由于双曲线x2-y2=1的焦点为(±,0),故应有=,p=2.
3.(2015·天津,6)已知双曲线-=1(a>0,b>0)的一条渐近线过点(2,) ,且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】D
【解析】双曲线-=1的渐近线方程为y=±x,又渐近线过点(2,),
所以=,即2b=a,①
抛物线y2=4x的准线方程为x=-,由已知,得=,即a2+b2=7②,
联立①②解得a2=4,b2=3,所求双曲线的方程为-=1,选D.
4.(2015·浙江,5)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是( )
A. B.
C. D.
【答案】A
5.(2015·福建,3)若双曲线E -=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于( )
A.11 B.9 C.5 D.3
【答案】B
【解析】由双曲线定义||PF2|-|PF1||=2a,∵|PF1|=3,∴P在左支上,∵a=3,∴|PF2|-|PF1|=6,∴|PF2|=9,故选B. 学
6.(2015·安徽,4)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( )
A.x2-=1 B.-y2=1
C.-x2=1 D.y2-=1
【答案】C
【解析】由双曲线性质知A、B项双曲线焦点在x轴上,不合题意;C、D项双曲线焦点均在y轴上,但D项渐近线为y=±x,只有C符合,故选C.
7.(2015·广东,7)已知双曲线C -=1的离心率e=,且其右焦点为F2(5,0),则双曲线C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】B
【解析】因为所求双曲线的右焦点为F2(5,0)且离心率为e==,所以c=5,a=4,b2=c2-a2=9,所以所求双曲线方程为-=1,故选B.
8.(2015·四川,5)过双曲线x2-=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|=( )
A. B.2 C.6 D.4
【答案】D
【解析】焦点F(2,0),过F与x轴垂直的直线为x=2,渐近线方程为x2-=0,将x=2代入渐近线方程得y2=12,y=±2,∴|AB|=2-(-2)=4.选D.
9.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )
A. B.2 C. D.
【答案】D
10.(2015·新课标全国Ⅰ,5)已知M(x0,y0)是双曲线C -y2=1上的一点,F1,F2是C的两个焦点,若·<0,则y0的取值范围是( )
A. B.
C. D.
【答案】A
【解析】由题意知M在双曲线C -y2=1上,又在x2+y2=3内部,由得y=±,所以-0,b>0)的渐近线与抛物线C2 x2=2py(p>0)交于点O,A,B.若△OAB的垂心为C2的焦点,则C1的离心率为________.
【答案】
【解析】由题意,不妨设直线OA的方程为y=x,直线OB的方程为y=-x.由得x2=2p ·x,
∴x=,y=,∴A.学
设C1的离心率为e,则e2===1+=.
∴e=.