- 792.00 KB
- 2021-07-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011年数学人教版重庆卷
一、选择题
1、(重庆理5)下列区间中,函数=在其上为增函数的是
(A)(- (B) (C) (D)
2、(重庆理10)设m,k为整数,方程在区间(0,1)内有两个不同的根,则m+k的最小值为
(A)-8 (B)8 (C)12 (D) 13
3、(重庆文6)设,,,则,,的大小关系是
(A) (B)
(C) (D)
4、(重庆理2)“”是“”的
A.充分而不必要条件 B.必要而不充分条件
C.充要条件 D.既不充分也不必要
二、解答题
5、(重庆理18)设的导数满足,其中常数。
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ) 设,求函数的极值。
6、(重庆文19)设的导数为,若函数的图象关于直线
对称,且.](Ⅰ)求实数,的值;(Ⅱ)求函数的极值
三、选择题
7、重庆文9.设双曲线的左准线与两条渐近线交于 两点,左焦点在以为直径的圆内,则该双曲线的离心率的取值范围为
A. B. C. D.,
8、重庆理(8)在圆内,过点的最长弦和最短弦分别是和,则四边形的面积为
(A) (B) (C) (D)
四、填空题
9、设圆C位于抛物线与直线3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________
10、过原点的直线与圆相交所得弦的长为2,则该直线的方程为
五、解答题
11、如题(21)图,椭圆的中心为原点0,离心率e=,一
条准线的方程是
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)设动点P满足:,其中M、N是椭圆上的点,直线OM与ON的斜率之积为,问:是否存在定点F,使得与点P到直线l:的距离之比为定值;若存在,求F的坐标,若不存在,说明理由。
12、(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分.)
如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ) 设动点满足:,其中是椭圆上的点,直线与的斜率之积为,问:是否存在两个定点,使得为定值?若存在,求 的坐标;若不存在,说明理由.[来源:高考资源网KS5U.COM]
六、选择题
13、(重庆理8)在圆内,过点E(0,1)的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为
A. B. C. D.
14、(重庆理9)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为
A. B. C.1 D.
七、解答题
15、(重庆理20)如题(20)图,椭圆的中心为原点,离心率,一条准线的方程为.
(Ⅰ)求该椭圆的标准方程;
(Ⅱ)设动点满足:,其中是椭圆上的点,直线与的斜率之积为
,问:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.
16、(浙江理21)
已知抛物线:=,圆:的圆心为点M
(Ⅰ)求点M到抛物线的准线的距离;
(Ⅱ)已知点P是抛物线上一点(异于原点),过点P作圆的两条切线,交抛物线于A,B两点,若过M,P两点的直线垂直于AB,求直线的方程
17、(重庆理19)
如题(19)图,在四面体中,平面平面,,,.
(Ⅰ)若,,求四面体的体积;
(Ⅱ)若二面角为,求异面直线与所成角的余弦值.
18、(重庆理15)设圆C位于抛物线与直线x=3所围成的封闭区域(包含边界)内,则圆C的半径能取到的最大值为__________
19、(上海理23) 已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。
(1)求点到线段的距离;
(2)设是长为2的线段,求点集所表示图形的面积;
(3)写出到两条线段距离相等的点的集合,其中
,
20、(四川理21)
椭圆有两顶点A(-1,0)、B(1,0),过其焦点F(0,1)的直线l与椭圆交于C、D两点,并与x轴交于点P.直线AC与直线BD交于点Q.
(I)当|CD | = 时,求直线l的方程;
(II)当点P异于A、B两点时,求证:为定值。
21、(天津理18)在平面直角坐标系中,点为动点,分别为椭圆的左右焦点.已知△为等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设直线与椭圆相交于两点,是直线上的点,满足,求点的轨迹方程.
八、选择题
22、重庆文4.从一堆苹果中任取10只,称得它们的质量如下(单位:克)
125 120 122 105 130 114 116 95 120 134
则样本数据落在内的频率为
A.0.2 B.0.3 C.0.4 D.0.5
九、填空题
23、重庆文14.从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为
十、解答题
24、重庆文17.(本小题满分13分,(I)小问6分,(II)小问7分)
某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(I)没有人申请A片区房源的概率;
(II)每个片区的房源都有人申请的概率。
十一、填空题
25、(重庆理13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率__________
十二、解答题
26、将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率
为__________
27、(天津理16)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,
(i)摸出3个白球的概率;
(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望.
28、重庆理(4)的展开式中与的系数相等,则=
(A)6 (B)7 (C)8 (D)9
29、的展开式中的系数是
30、(本小题满分13分)(Ⅰ)小问5分,(Ⅱ)小问8分)
某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的。求该市的任4位申请人中:
(Ⅰ)恰有2人申请A片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的分布列与期望。
重庆文4.从一堆苹果中任取10只,称得它们的质量如下(单位:克)
125 120 122 105 130 114 116 95 120 134
则样本数据落在内的频率为 C
A.0.2 B.0.3 C.0.4 D.0.5
31、(重庆理17)某市公租房的房源位于A,B,C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的求该市的任4位申请人中:
(Ⅰ)恰有2人申请A片区房源的概率;
(Ⅱ)申请的房源所在片区的个数的分布列与期望
32、(本小题满分13分,(I)小问6分,(II)小问7分)
某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,求该市的任4位申请人中:
(I)没有人申请A片区房源的概率;
(II)每个片区的房源都有人申请的概率。
十三、选择题
33、(重庆理6)若△ABC的内角A、B、C所对的边a、b、c满足,且C=60°,则ab的值为
A. B. C. 1 D.
十四、填空题
34、(重庆理14)已知,且,则的值为__________
十五、解答题
35、(重庆理16)
设,满足,求函数在上的最大值和最小值.
36、(重庆理21)
设实数数列的前n项和,满足
(I)若成等比数列,求和;
(II)求证:对
37、设的导数为,若函数的图象关于直线对称,且.](Ⅰ)求实数,的值;(Ⅱ)求函数的极值
38、设的导数满足,其中常数。
(Ⅰ)求曲线在点处的切线方程;
(Ⅱ) 设,求函数的极值。
以下是答案
一、选择题
1、D
2、D
3、B
4、A
二、解答题
5、解:(Ⅰ)则;
;所以,于是有
故曲线在点处的切线方程为:
(Ⅱ)由(Ⅰ)知,令
;
于是函数在上递减,上递增,上递减;
所以函数在处取得极小值,在处取得极大值
。
6、解:(Ⅰ),函数的图象关于直线
对称,
所以,又;
(Ⅱ)由(Ⅰ),
令;
函数在上递增,在上递减,在上递增,所以函数在处取得极大值,在处取得极大值。
三、选择题
7、B
8、B
四、填空题
9、
10、
五、解答题
11、解:(I)由
解得,故椭圆的标准方程为
(II)设,则由
得
因为点M,N在椭圆上,所以
,
故
设分别为直线OM,ON的斜率,由题设条件知
因此所以
所以P点是椭圆上的点,该椭圆的右焦点为,离心率是该椭圆的右准线,故根据椭圆的第二定义,存在定点,使得|PF|与P点到直线l的距离之比为定值。
12、(本题12分)
解:(I)由
解得,故椭圆的
标准方程为
(II)设,则由得
因为点M,N在椭圆上,所以,
故
设分别为直线OM,ON的斜率,由题设条件知
因此所以
所以P点是椭圆上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因,因此两焦点的坐标为
六、选择题
13、B
14、C
七、解答题
15、解:(I)由
解得,故椭圆的标准方程为
(II)设,则由
得
因为点M,N在椭圆上,所以
,
故
设分别为直线OM,ON的斜率,由题设条件知
因此
所以
所以P点是椭圆上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值,又因,因此两焦点的坐标为
16、本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。满分15分。
(I)解:由题意可知,抛物线的准线方程为:
所以圆心M(0,4)到准线的距离是
(II)解:设,
则题意得,
设过点P的圆C2的切线方程为,
即 ①
则
即,
设PA,PB的斜率为,则是上述方程的两根,所以
将①代入
由于是此方程的根,
故,所以
由,得,
解得
即点P的坐标为,
所以直线的方程为
17、(I)解:如答(19)图1,设F为AC的中点,由于AD=CD,所以DF⊥AC.
故由平面ABC⊥平面ACD,知DF⊥平面ABC,
即DF是四面体ABCD的面ABC上的高,
且DF=ADsin30°=1,AF=ADcos30°=.
在Rt△ABC中,因AC=2AF=,AB=2BC,
由勾股定理易知
故四面体ABCD的体积
(II)解法一:如答(19)图1,设G,H分别为边CD,BD的中点,则FG//AD,GH//BC,从而∠FGH是异面直线AD与BC所成的角或其补角.
设E为边AB的中点,则EF//BC,由AB⊥BC,知EF⊥AB.又由(I)有DF⊥平面ABC,
故由三垂线定理知DE⊥AB.
所以∠DEF为二面角C—AB—D的平面角,由题设知∠DEF=60°
设
在
从而
因Rt△ADE≌Rt△BDE,故BD=AD=a,从而,在Rt△BDF中,,
又从而在△FGH中,因FG=FH,由余弦定理得
因此,异面直线AD与BC所成角的余弦值为
解法二:如答(19)图2,过F作FM⊥AC,交AB于M,已知AD=CD,
平面ABC⊥平面ACD,易知FC,FD,FM两两垂直,以F为原点,射线FM,FC,FD分别为x轴,y轴,z轴的正半轴,建立空间直角坐标系F—xyz.
不妨设AD=2,由CD=AD,∠CAD=30°,易知点A,C,D的坐标分别为
显然向量是平面ABC的法向量.
已知二面角C—AB—D为60°,
故可取平面ABD的单位法向量,
使得
设点B的坐标为,有
易知与坐标系的建立方式不合,舍去.
因此点B的坐标为所以
从而
故异面直线AD与BC所成的角的余弦值为
18、
19、是下列三组点中的一组。对于下列三组点只需选做一种,满分分别是①2分,②
6分,③8分;若选择了多于一种的情形,则按照序号较小的解答计分。
。
② 。
③ 。
解:⑴ 设是线段上一点,则
,当时,。
⑵ 设线段的端点分别为,以直线为轴,的中点为原点建立直角坐标系,
则,点集由如下曲线围成
,
其面积为。
⑶ ① 选择,
② 选择。
③ 选择。
20、解:由已知可得椭圆方程为,设的方程为为的斜率。
则
的方程为
21、本小题主要考查椭圆的标准方程和几何性质、直线的方程、平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力.满分13分.
(I)解:设
由题意,可得
即
整理得(舍),
或所以
(II)解:由(I)知
可得椭圆方程为
直线PF2方程为
A,B两点的坐标满足方程组
消去y并整理,得
解得
得方程组的解
不妨设
设点M的坐标为,
由
于是
由
即,
化简得
将
所以
因此,点M的轨迹方程是
八、选择题
22、C
九、填空题
23、
十、解答题
24、(本题13分)
解:这是等可能性事件的概率计算问题。
(I)解法一:所有可能的申请方式有34种,而“没有人申请A片区房源”的申请方式有24种。
记“没有人申请A片区房源”为事件A,则
解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.
记“申请A片区房源”为事件A,则
由独立重复试验中事件A恰发生k次的概率计算公式知,没有人申请A片区房源的概率为
(II)所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有
种.
记“每个片区的房源都有人申请”为事件B,从而有
十一、填空题
25、
十二、解答题
26、
27、解:本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力.满分13分.
(I)(i)解:设“在1次游戏中摸出i个白球”为事件则
(ii)解:设“在1次游戏中获奖”为事件B,则,又
且A2,A3互斥,所以
(II)解:由题意可知X的所有可能取值为0,1,2.
所以X的分布列是
X
0
1
2
P
X的数学期望
28、B
29、240
30、(本题13分)
解:这是等可能性事件的概率计算问题.
(I)解法一:所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式种,从而恰有2人申请A片区房源的概率为
解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.
记“申请A片区房源”为事件A,则
从而,由独立重复试验中事件A恰发生k次的概率计算公式知,恰有2人申请A片区房源的概率为
(II)ξ的所有可能值为1,2,3.又
综上知,ξ有分布列
ξ
1 2 3
P
从而有
31、解:这是等可能性事件的概率计算问题.
(I)解法一:所有可能的申请方式有34种,恰有2人申请A片区房源的申请方式种,从而恰有2人申请A片区房源的概率为
解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.
记“申请A片区房源”为事件A,则
从而,由独立重复试验中事件A恰发生k次的概率计算公式知,恰有2人申请A片区房源的概率为
(II)ξ的所有可能值为1,2,3.又
综上知,ξ有分布列
ξ
1 2 3
P
从而有
32、(本题13分)
解:这是等可能性事件的概率计算问题。
(I)解法一:所有可能的申请方式有34种,而“没有人申请A片区房源”的申请方式有24种。
记“没有人申请A片区房源”为事件A,则
解法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.
记“申请A片区房源”为事件A,则
由独立重复试验中事件A恰发生k次的概率计算公式知,没有人申请A片区房源的概率为
(II)所有可能的申请方式有34种,而“每个片区的房源都有人申请”的申请方式有
种.
记“每个片区的房源都有人申请”为事件B,从而有
十三、选择题
33、A
十四、填空题
34、
十五、解答题
35、解:
由
因此
当为增函数,
当为减函数,
所以
又因为
故上的最小值为
36、解:由题意,
由S2是等比中项知
由解得
(II)证法一:由题设条件有
故
从而对有
①
因,由①得
要证,由①只要证
即证
此式明显成立.
因此
最后证若不然
又因矛盾.
因此
证法二:由题设知,
故方程(可能相同).
因此判别式
又由
因此,
解得
因此
由,得
因此
37、解:(Ⅰ),函数的图象关于直线对称,
所以,又;
(Ⅱ)由(Ⅰ),令
;
函数在上递增,在上递减,在上递增,所以函数在处取得极大值,在处取得极大值。
38、解:(Ⅰ)则;
;所以,于是有
故曲线在点处的切线方程为:
(Ⅱ)由(Ⅰ)知,令
;
于是函数在上递减,上递增,上递减;
所以函数在处取得极小值,在处取得极大值。
相关文档
- 2013年浙江省高考数学试卷(理科)2021-07-0125页
- 2013年四川省高考数学试卷(文科)2021-07-0125页
- 2015年福建省高考数学试卷(文科)2021-07-0123页
- 2005年陕西省高考数学试卷(文)【附答2021-07-015页
- 2005年广西高考数学试卷Ⅱ(理)【附答2021-07-016页
- 2016年天津市高考数学试卷(理科)2021-07-0125页
- 2014年重庆市高考数学试卷(文科)2021-07-0123页
- 2015年全国统一高考数学试卷(理科)(新2021-07-0128页
- 【2020年高考数学预测题】上海市高2021-07-018页
- 2012年北京市高考数学试卷(理科)2021-07-0123页