- 720.05 KB
- 2021-10-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
A B
C D
M
N
1、在练习本上画两条平行线AB、
CD,再画直线MN与直线AB、
CD相交
2 、指出图中同位角、内错角、同旁内
角
13
6
8
2
57
4
(如下图)
( )
复习与回顾
(1)∵∠ =∠___
∴ a∥b( )
(2)∵∠ =∠
∴ a∥b
1
2
2
4
同位角相等,两直线平行
内错角相等,两直线平行
c
b
4
3
2
1 a
( )
(3)∵∠ +∠ =180°
∴ a∥b
23
同旁内角互补,两直线平行
复习与回顾
4
3
2
1 a
c
b
7
2
5
6
3 1
8 4
2、将上图按照如下方式剪开,并分别
把剪开得到的每对同位角、内错角重叠,
你发现了什么?
做
一
做
2、将上图按照如下方式剪开,并分别
把剪开得到的每对同位角重叠,你发现
了什么?
做
一
做
7
2
5
6
两直线平行,同位角相等
哇!我有发现啦!
3 1
8 4
2、将上图按照如下方式剪开,并分别
把剪开得到的每对 重叠,你发现
了什么?
做
一
做
8 4
7
2
5
6
3 1
两直线平行,内错角相等
哇!我又
知道啦!
内错角
你能根据”两直线平行,同位角
相等”,说明“两直线平行,内错
角相等”成立的理由吗? a
b
c1
2
3
解:
∵a∥b
∴∠1=∠2
如图所示
又∵ ∠1=∠3(对顶角相等)
(已知)
(两直线平行,内错角相等)
∴∠2=∠3 (等量代换)
做
一
做
7
2
5
6
3、将图中的每对同旁内角剪成两部分,并
把他们拼到一起去,你发现每对同旁内角
之间有什么关系?
两直线平行,同旁内角互补.
哇!请注意,我
又有 新发现啦!
7
3 1
8 4
2
如果我们现在只知道”两
直线平行,同位角相等”.你能
说明两直线平行,同旁内角互
补”成立的理由吗?
∴ ∠2 + ∠3 = 180°
解:如图所示
1 a3
2 b∵a∥b (已知)
∴∠1=∠2 (两直线平行,同位角相等)
又∵ ∠1+∠3 = 180° (平角定义)
(等量代换)
例1 已知:直线a∥b,c∥d, ∠1=115°,
求∠2与∠3的度数
解:
∵ a∥b
∴∠2=∠1=115°
∵ c∥d
∴∠3=∠2=115°
(两直线平行,内错角相等)
(已知)
(已知)
(两直线平行,内错角相等)
1
2 3
a
b
c d
1.如图若AB ∥ CD,则下列结论中
① ∠B=∠2 ② ∠3=∠A ③
∠3=∠B ④ ∠B + ∠BCD= 180°正
确的 是 ( )
A ① ② B ① ③
C ① ④ D ③ ④
D
A
B EC
D
1
2
3
×
√
×
√
2.如图,若AB ∥ ED,BC ∥ FE,
则∠B + ∠E=_______
A
B C
D
EF
°180
例3 如图,AD∥BC, ∠A=∠C.
试说明AB∥DC
A E
F CB
D
(同位角相等,两直线平行)
解: ∵AD∥BC(已知)
∴∠C=∠CDE (两直线平行,内错角相等)
又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE (等量代换)
∴AB∥DC
A
B C
D
21
例2 如图:已知AB∥CD,求
∠A+∠B+∠ACB的度数.
解:因为AB∥CD,根据“两直线
平行,内错角相等”
所以∠A=∠1.
因为AB∥CD,根据“两直线平
行,同位角相等”
所以∠B=∠2.
所以 ∠ A+∠B+∠ACB
= ∠1+ ∠2+ ∠ACB= 180°
课堂小结:
通过本节课的学习,你有什么感悟?
(1)平行线的三条性质
(2)利用平行线的三条性质解计算题和简单
的解答题
作业:
P14 -15 1~4