• 78.45 KB
  • 2021-10-22 发布

冀教七下二元一次方程组的解法课时

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎9.2 二元一次方程组的解法(第1课时)‎ 教学任务分析 教学 目标 知识与技能 ‎1.会用一个未知数表示另一个未知数;‎ ‎2.会用代入法解二元一次方程组.‎ 过程与方法 经历探究用代入法解二元一次方程组的过程,体会化归的方法.‎ 情感态度与 价值观 在用代入法解二元一次方程组的过程中,树立化归的思想.‎ 重点 用一个未知数表示另一个未知数、代入法解二元一次方程组.‎ 难点 用代入法解方程的前提是用一个未知数表示另一个未知数,这也是本节的难点.‎ 教学流程安排 活动说明 活动目的 活动1 用一个未知数表示另一个未知数.‎ 为代入法解方程组做准备.‎ 活动2 用代入法解二元一次方程组.‎ 探究代入法解方程组,体会化归思想.‎ 活动3 回顾与反思.‎ 总结代入法解方程组的方法和化归思想.‎ 活动4 巩固练习.‎ 强化代入法解方程的方法.‎ 课前准备 教具 学具 补充材料 电脑、投影仪 课件资源、投影片 ‎ 教学过程设计 问题与情景 师生行为 设计意图 活动1 用一个未知数表示另一个未知数 请完成下面练习:‎ ‎⑴,所以;‎ ‎⑵,所以,.‎ 学生独立解答第⑴题,教师给予鼓励.‎ 第⑵题可由学生先解答,根据情况教师给予指导.‎ 最后总结出用一个未知数表示另一个未知数的方法.‎ ‎①被表示的未知数在左边,其他的全部移到右边;‎ ‎②把被表示的未知数的系数化为1.‎ 学习用一个未知数表示另一个未知数的方法.‎ 请同学们做课后习题(P67)第1题的⑴、⑵题.‎ 学生解答,教师巡视.‎ 可找学生板演.‎ 训练用一个未知数表示另一个未知数.‎ 活动2 用代入法解二元一次方程组 请同学们看方程组.‎ 学生讨论,教师巡视指导.‎ 学生尝试解方程组.‎ 想一想,怎样解方程组?‎ 解:把②代入①得,‎ 把x=3代入②,得 所以,原方程组的解是 教师边板书,边讲述解题要求.‎ 学习用代入法解方程组.‎ 讨论:你认为我们求出方程组的解的关键是什么?我们怎样解方程组?‎ 学生讨论,教师巡视指导.‎ 方向是消元,方法是代入.‎ 步骤:①表示;②代入消元;③求出一个未知数的值;④再求另一个未知数的值;⑤写出方程组的解.‎ 讨论:代入消元的思想和步骤.‎ 请同学们解方程组 ‎ 学生解答,教师巡视指导.‎ 可找学生板演.‎ 训练代入法解方程组.‎ 活动3 回顾与反思 ‎1.我们解方程组的方向是________,方法是________.为了消元我们用一个未知数表示________,消元以后就求把二元一次方程组解的问题转化为求________解的问题.这种方法叫做________.‎ ‎2.请说出代入法解方程组的一般步骤.‎ 学生回答,教师点评.‎ 总结代入法解二元一次方程组的思想和方法.‎ 活动4 巩固练习 请做课后练习 学生解答,教师巡视点评.‎ 训练代入法解方程的能力.‎ 布置作业 课后习题第2题.‎ ‎9.2 二元一次方程组的解法(第2课时)‎ 教学任务分析 教学 目标 知识与技能 ‎1.巩固用一个未知数表示另一个未知数的方法;‎ ‎2.会选择简便的方法解方程组.‎ 情感态度与 价值观 在解方程组的过程中,培养学生认真细心的好习惯.‎ 重点 选择合适的方法正确地解方程组.‎ 难点 由于方程组较为复杂,容易出现计算方面的错误.‎ 教学流程安排 活动说明 活动目的 活动1 回忆代入法解方程组.‎ 复习上节课的学习内容.‎ 活动2 用代入法解较复杂的方程组.‎ 总结解方程组的技巧.‎ 活动3 巩固练习.‎ 巩固上述方法.‎ 活动4 回顾与反思.‎ 总结解二元一次方程组的方法.‎ 课前准备 教具 学具 补充材料 电脑、投影仪 课件资源、投影片 ‎ 教学过程设计 问题与情景 师生行为 设计意图 活动1 回忆代入法解方程组 ‎1.如果,那么x=________; ‎ ‎2.解方程组 学生解答,教师点评并给予鼓励.‎ 回忆用一个未知数表示另一个未知数以及解简单的方程组的方法.‎ 活动2 用代入法解较复杂的方程组 例1解方程组 学生先做,教师巡视指导.‎ 感受解方程组的复杂性,为下面学习做准备.‎ 解:由方程⑴,得 表示系数“较小”的未知数.(边板书边讲)‎ 帮助学生总结解方程组的方法和注意事项.‎ 把⑶代入⑵,得 即 解之,得 代入到另一个方程中.(边板书边讲)‎ 把代入⑶,得 代入到⑶中求x的值较快.(边板书边讲)‎ 所以,原方程组的解是 请同学们谈一谈,刚才解方程组的过程中有哪些值得注意的地方?‎ 用代入法解方程组的一般步骤是什么?‎ 学生总结,教师点评.‎ 总结解方程组的方法.‎ 活动3 巩固练习 请同学们一起完成P69“大家谈谈”中的问题?‎ 学生口答第1题,然后解方程组.(可找学生板演)‎ 巩固前面总结的方法.‎ 请同学们做P69的课后练习.‎ 学生解答,教师巡视指导.‎ ‎(可找学生板演)‎ 训练解方程组的技能.‎ 活动4 回顾与反思 用代入法解方程组,应注意下面两个问题:‎ ‎1.怎样选择要表示的未知数?‎ ‎2.求出一个未知数后,求另一个未知数时,代到哪个方程计算会简便一些?‎ 用代入法解方程组的一般步骤是什么?‎ 除了上述问题,你还有哪些收获?‎ 学生回答,教师点评.‎ 总结解二元一次方程组的方法.‎ 布置作业 课后习题第1、2题.‎ ‎9.2 二元一次方程组的解法(第3课时)‎ 教学任务分析 教学 目标 知识与技能[来 会用加减消元法解二元一次方程组.‎ 过程与方法 通过探究加减消元法,体会化归的方法.‎ 情感态度与 价值观 在探究加减消元法的过程中,树立化归的数学思想.‎ 重点 正确使用加减消元法解方程组.‎ 难点 有的方程组的系数较为复杂,学生解答起来有一定困难.‎ 教学流程安排 活动说明 活动目的 活动1 感受加减消元.‎ 在具体问题中激发加减消元的思想.‎ 活动2 简单的加减消元.‎ 实施简单的加减消元.‎ 活动3 系数不相等(或相反)的加减消元法.‎ 用加减消元解的一般方程组.‎ 活动4 回顾与反思.‎ 总结加减消元法的一般步骤.‎ 课前准备 教具 学具 补充材料 电脑、投影仪 课件资源、投影片 ‎ 教学过程设计 问题与情景 师生行为 设计意图 活动1 感受加减消元 请看下面方程组 通过观察可以看出2x的值吗?‎ 通过观察可以看出2y的值吗?‎ 学生观察,教师等待.‎ 激发学生的学习兴趣.‎ 引入加减消元法.‎ ‎1.不用代入法可以解上面的方程组吗?‎ ‎2.两个方程相加就可以消去y,y的系数由什么有什么特点?‎ ‎3.两个方程相减就可以消去x,x的系数由什么有什么特点?‎ 学生回答,教师点评并给予鼓励.‎ 总结加减消元法,未知数系数的特点:系数相同则减,系数相反则加.(系数指同一个未知数的系数)‎ 活动2 简单的加减消元 解方程组 学生解答,教师巡视指导.‎ ‎(可找学生板演)‎ 尝试用加减消元法解方程组.‎ 讨论:两个方程相加,得x=2,接下来怎样求y的值?‎ 学生回答,教师指导.‎ 使学生认识,加渐消元并不排除代入.‎ 请同学们再解下面方程组 学生解答,教师巡视指导.‎ ‎(可找学生板演)‎ 巩固加减消元法.‎ 活动3 系数不相等(或相反)的加减消元法 例2 解方程组 学生观察, 教师等待1分钟.‎ 发现使用加减消元法的困难.‎ 分析:这个方程组中,同一个未知数的系数既没有出现相同的,也没有出现相反的.我们想什么方法使得同一个未知数的系数相同或相反?‎ 学生讨论,教师巡视指导.‎ 把系数化成相同的数.‎ 解:(略)‎ 师生共同完成.‎ 学习一般方程组的解法.‎ 上述解法中,我们是怎样把系数变成了可以进行加减消元的?‎ 学生回答,教师点评.‎ 总结系 数如何变化及消元的方法?‎ 请大家讨论“大家谈谈”(P71).‎ 学生讨论,教师巡视指导.‎ 请同学们做课后练习(72).‎ 活动4 回顾与反思 请同学们想一想,加减消元法解方程组的一般步骤.‎ 学生思考后师生一起总结:‎ ‎①变系数;②消一元求出一元;③再求另一元;④写出方程组的解.‎ 总结加减消元法解方程组的一般步骤 解方程的方法是灵活的,同学们应根据需要灵活地选择适当的方法.‎ 布置作业 课后习题第1、2、3、4题.‎