- 383.50 KB
- 2021-10-25 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2015-2016学年山东省聊城市东昌府区郑家镇中学七年级(上)月考数学试卷(10月份)
一、选择题(每小题都有一个正确的选项,请您仔细认真选一选)
1.下列标注的图形名称与图形不相符的是( )
A.
球 B.
长方体 C.
圆柱 D.
圆锥
2.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A.0 B.2 C.数 D.学
3.如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是( )
A. B. C. D.
4.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线( )
A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
5.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( )
A.﹣2 B.﹣3 C.3 D.5
6.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为( )
A.2cm B.3cm C.4cm D.6cm
7.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( )
A.2013 B.2014 C.2015 D.2016
8.下列说法错误的是( )
A.﹣2的相反数是2
B.3的倒数是
C.(﹣3)﹣(﹣5)=2
D.﹣11,0,4这三个数中最小的数是0
9.若( )﹣(﹣2)=3,则括号内的数是( )
A.﹣1 B.1 C.5 D.﹣5
10.计算(﹣3)2的结果是( )
A.﹣6 B.6 C.﹣9 D.9
11.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105 B.6.75×104 C.67.5×103 D.675×102
12.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )
A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边
二、填空题(每小题4,共24分)
13.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作__________千米.
14.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因__________.
15.往返于甲、乙两地的火车中途要停靠三个站,则有__________种不同的票价(来回票价一样),需准备__________种车票.
16.已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=__________.
17.如图,数轴上点A、B所表示的两个数的和的绝对值是__________.
18.若|x|=3,则x=__________;若|x﹣1|=4,则x=__________.
三、解答题(共60分)
19.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).
20.计算:
(1)(﹣17)+2﹣(+13)﹣(﹣28)
(2)(﹣)+(﹣)﹣(+)﹣(﹣)
21.(1)(﹣)×(﹣3)÷(﹣1)÷3
(2)[(+)﹣(﹣)﹣(+)]÷(﹣)
22.某一出租车一天下午以农工商为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.
(1)将最后一名乘客送到目的地,出租车离农工商出发点多远?在农工商的什么方向?
(2)若每千米的价格为1.6元,这个司机一个下午的营业额是多少?
23.(14分)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
2015-2016学年山东省聊城市东昌府区郑家镇中学七年级(上)月考数学试卷(10月份)
一、选择题(每小题都有一个正确的选项,请您仔细认真选一选)
1.下列标注的图形名称与图形不相符的是( )
A.
球 B.
长方体 C.
圆柱 D.
圆锥
【考点】认识立体图形.
【分析】利用球与圆的区别判定即可.
【解答】解:圆是平面图形,球是立体图形,所以A图形名称与图形不相符.
故选:A.
【点评】本题主要考查了认识立体图形,解题的关键是熟记各种立体图形的特征.
2.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A.0 B.2 C.数 D.学
【考点】专题:正方体相对两个面上的文字.
【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“数”相对的字是“1”;
“学”相对的字是“2”;
“5”相对的字是“0”.
故选:A.
【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
3.如图,矩形绕它的一条边MN所在的直线旋转一周形成的几何体是( )
A. B. C. D.
【考点】点、线、面、体.
【专题】常规题型;压轴题.
【分析】矩形旋转一周得到的是圆柱,选择是圆柱的选项即可.
【解答】解:矩形绕一边所在的直线旋转一周得到的是圆柱.
故选C.
【点评】本题考查了点、线、面、体的知识,熟记常见的平面图形转动所成的几何体是解题的关键,此类题目主要考查同学们的空间想象能力.
4.如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线( )
A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
【考点】线段的性质:两点之间线段最短.
【分析】根据线段的性质,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B,据此解答即可.
【解答】解:根据两点之间的线段最短,
可得C、B两点之间的最短距离是线段CB的长度,
所以想尽快赶到书店,一条最近的路线是:A→C→F→B.
故选:B.
【点评】此题主要考查了线段的性质,要熟练掌握,解答此题的关键是要明确:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.
5.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( )
A.﹣2 B.﹣3 C.3 D.5
【考点】正数和负数.
【分析】根据正负数的意义,绝对值最小的即为最接近标准的.
【解答】解:|﹣2|=2,|﹣3|=3,|3|=3,|5|=5,
∵2<3<5,
∴从轻重的角度来看,最接近标准的是记录为﹣2.
故选A.
【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
6.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为( )
A.2cm B.3cm C.4cm D.6cm
【考点】两点间的距离.
【分析】利用已知得出AC的长,再利用中点的性质得出AD的长.
【解答】解:∵AB=10cm,BC=4cm,
∴AC=6cm,
∵D是线段AC的中点,
∴AD=3cm.
故选:B.
【点评】此题主要考查了两点间的距离,得出AC的长是解题关键.
7.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( )
A.2013 B.2014 C.2015 D.2016
【考点】数轴.
【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.
【解答】解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015.
故选:C.
【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.
8.下列说法错误的是( )
A.﹣2的相反数是2
B.3的倒数是
C.(﹣3)﹣(﹣5)=2
D.﹣11,0,4这三个数中最小的数是0
【考点】相反数;倒数;有理数大小比较;有理数的减法.
【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.
【解答】解:﹣2的相反数是2,A正确;
3的倒数是,B正确;
(﹣3)﹣(﹣5)=﹣3+5=2,C正确;
﹣11,0,4这三个数中最小的数是﹣11,D错误,
故选:D.
【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.
9.若( )﹣(﹣2)=3,则括号内的数是( )
A.﹣1 B.1 C.5 D.﹣5
【考点】有理数的加法.
【专题】计算题.
【分析】根据题意列出算式,计算即可得到结果.
【解答】解:根据题意得:3+(﹣2)=1,
则1﹣(﹣2)=3,
故选:B.
【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.
10.计算(﹣3)2的结果是( )
A.﹣6 B.6 C.﹣9 D.9
【考点】有理数的乘方.
【分析】根据有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.
【解答】解:(﹣3)2=(﹣3)×(﹣3)=9.
故选:D.
【点评】本题考查有理数的乘方运算,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数.
11.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )
A.0.675×105 B.6.75×104 C.67.5×103 D.675×102
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:将67500用科学记数法表示为:6.75×104.
故选:B.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )
A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边
【考点】实数与数轴.
【分析】根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
【解答】解:∵|a|>|c|>|b|,
∴点A到原点的距离最大,点C其次,点B最小,
又∵AB=BC,
∴原点O的位置是在点B、C之间且靠近点B的地方.
故选C.
【点评】本题考查了实数与数轴,理解绝对值的定义是解题的关键.
二、填空题(每小题4,共24分)
13.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶2千米应记作﹣2千米.
【考点】正数和负数.
【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.
【解答】解:汽车向东行驶3千米记作3千米,向西行驶2千米应记作﹣2千米.
故答案为:﹣2.
【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
14.如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因两点之间线段最短.
【考点】线段的性质:两点之间线段最短;三角形三边关系.
【专题】开放型.
【分析】根据线段的性质解答即可.
【解答】解:为抄近路践踏草坪原因是:两点之间线段最短.
故答案为:两点之间线段最短.
【点评】本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.
15.往返于甲、乙两地的火车中途要停靠三个站,则有10种不同的票价(来回票价一样),需准备20种车票.
【考点】直线、射线、线段.
【专题】应用题;压轴题.
【分析】先求出线段条数,一条线段就是一种票价,车票是要考虑顺序,求解即可.
【解答】解:此题相当于一条线段上有3个点,
有多少种不同的票价即有多少条线段:4+3+2+1=10;
有多少种车票是要考虑顺序的,则有10×2=20.
【点评】主要考查运用数学知识解决生活中的问题;需要掌握正确数线段的方法.
16.已知线段AB=8cm,在直线AB上画线段BC,使BC=3cm,则线段AC=11cm或5cm.
【考点】两点间的距离.
【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.
【解答】解:由于C点的位置不确定,故要分两种情况讨论:
当C点在B点右侧时,如图所示:
AC=AB+BC=8+3=11cm;
当C点在B点左侧时,如图所示:
AC=AB﹣BC=8﹣3=5cm;
所以线段AC等于11cm或5cm,
故答案为:11cm或5cm.
【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.
17.如图,数轴上点A、B所表示的两个数的和的绝对值是1.
【考点】数轴;绝对值;有理数的加法.
【分析】首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可.
【解答】解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,
则﹣3+2=﹣1,
|﹣1|=1,
故答案为:1.
【点评】本题考查了数轴和绝对值,解题的关键是从数轴上得到点A、点B表示的数,然后求其和的绝对值.
18.若|x|=3,则x=±3;若|x﹣1|=4,则x=5或﹣3.
【考点】含绝对值符号的一元一次方程.
【专题】计算题.
【分析】依据绝对值的意义,得出x=±3,x﹣1=±4,可解得出x的值.注意结果有两个.
【解答】解:因为|3|=3,|﹣3|=3,
所以x=±3.
又因为|4|=4,|﹣4|=4,
所以x﹣1=±4,
解得,x=5或﹣3.
【点评】绝对值都是非负数,互为相反数的两数绝对值相等.
三、解答题(共60分)
19.如图,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的实物(用线连接).
【考点】认识立体图形.
【分析】结合给出事物的特征,抽象出所对应的立体图形,关键是运用空间想象能力.
【解答】解:埃及金字塔﹣﹣(2)
西瓜﹣﹣(3)
水杯﹣﹣(1)
房屋﹣﹣(5).
【点评】本题要掌握常见立体图形的特征,注意培养观察力和空间想象能力.
20.计算:
(1)(﹣17)+2﹣(+13)﹣(﹣28)
(2)(﹣)+(﹣)﹣(+)﹣(﹣)
【考点】有理数的加减混合运算.
【分析】(1)先将加减混合运算统一为加法,然后再按照正负分组计算即可;
(2)先将加减混合运算统一加法,然后再将同分母分数相加,从而可求得答案.
【解答】解:(1)原式=(﹣17)+2+(﹣13)+28
=(﹣17)+(﹣13)+2+28
=﹣30+30
=0.
(2)原式=(﹣)+(﹣)+(﹣)+
=(﹣)+(﹣)+(﹣)+
=﹣1+
=﹣.
【点评】本题主要考查的是有理数的加减,掌握有理数的加法和减法法则是解题的关键.
21.(1)(﹣)×(﹣3)÷(﹣1)÷3
(2)[(+)﹣(﹣)﹣(+)]÷(﹣)
【考点】有理数的除法.
【专题】计算题.
【分析】(1)原式利用除法法则变形,约分即可得到结果;
(2)原式先计算括号中的运算,再计算除法运算即可得到结果.
【解答】解:(1)原式=﹣×××=﹣;
(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.
【点评】此题考查了有理数的乘除法,熟练掌握运算法则是解本题的关键.
22.某一出租车一天下午以农工商为出发地在东西方向运营,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+10.
(1)将最后一名乘客送到目的地,出租车离农工商出发点多远?在农工商的什么方向?
(2)若每千米的价格为1.6元,这个司机一个下午的营业额是多少?
【考点】有理数的加法.
【分析】(1)将各数相加可得出距离,若为负则在西方,若为正则在东边.
(2)将各数的绝对值相加可得出总路程,乘以每千米的价格可得出营业额.
【解答】解:(1)离农工商出发点距离=9﹣3﹣5+4﹣8+6﹣3﹣6﹣4+10=0,
∴出租车就在农工商.
(2)总路程=9+3+5+4+8+6+3+6+4+10=58(千米),
∴营业额为:58×1.6=92.8元.
答:将最后一名乘客送到目的地,出租车就在农工商,若每千米的价格为1.6元,这个司机一个下午的营业额是92.8元.
【点评】本题考查有理数的加法,比较简单,注意在第二问中总路程是所有数绝对值的和.
23.(14分)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.
【考点】比较线段的长短.
【专题】计算题.
【分析】(1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;
(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半.
【解答】解:(1)∵点M、N分别是AC、BC的中点,
∴CM=AC=4cm,CN=BC=3cm,
∴MN=CM+CN=4+3=7cm;
(2)同(1)可得CM=AC,CN=BC,
∴MN=CM+CN=AC+BC=(AC+BC)=a.
【点评】本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段.
相关文档
- 初一第一学期(10月)语文月考试题2021-10-253页
- 2019-2020学年山东省菏泽市东明县2021-10-2516页
- 山东省滕州市2019-2020学年七年级2021-10-2518页
- 2017-2018学年山东省济南外国语学2021-10-2525页
- 2018-2019学年山东省济南市历城区2021-10-258页
- 2019-2020学年山东省济南市章丘区2021-10-2530页
- 山东省临沂市费县一中2018年七年级2021-10-254页
- 2019-2020学年山东省潍坊市寿光市2021-10-2534页
- 山东省济南市槐荫区2018-2019学年2021-10-259页
- 2017-2018学年甘肃省张掖市高台县2021-10-258页