- 2.04 MB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
导入新课讲授新课当堂练习课堂小结22.7多边形的内角和与外角第二十二章四边形
情境引入学习目标1.掌握多边形的定义及有关概念,能区分凹凸多边形.2.会求多边形的对角线的条数.(难点)3.能通过不同方法探索多边形的内角和与外角和公式.(重点、难点)4.掌握正多边形的概念及内角的计算.(重点)5.了解四边形的不稳定性.
导入新课情景引入在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?
中国第一奇村诸葛八卦村美国国防部大楼——五角大楼
讲授新课多边形的定义及相关概念一问题2观察画某多边形的过程,类比三角形的概念,你能说出什么是多边形吗?在平面内,由不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形.问题1什么是三角形?由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
思考:比较多边形的定义与三角形的定义,为什么要强调“在平面内”呢?怎样命名多边形呢?这是因为三角形中的三个顶点肯定都在同一个平面内,而四点,五点,甚至更多的点就有可能不在同一个平面内.多边形用图形名称以及它的各个顶点的字母表示.字母要按照顶点的顺序书写,可以按顺时针或逆时针的顺序.
内角:多边形相邻两边组成的角问题3根据图示,类比三角形的有关概念,说明什么是多边形的边、顶点、内角、外角.顶点边外角:多边形的边与它的邻边的延长线组成的角.n边形有n个顶点,n条边,n个内角,2n个外角.多边形按它的边数可分为:三角形,四边形,五边形等等.其中三角形是最简单的多边形.
问题4请分别画出下列两个图形各边所在的直线,你能得到什么结论?(1)(2)如图(1)这样,画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形.本节我们只讨论凸多边形.ABCDEFGH此类多边形被一条边所在的直线分成了两部分,不在这条直线同侧是凹多边形.
例1凸六边形纸片剪去一个角后,得到的多边形的边数可能是多少?画出图形说明.解:∵六边形截去一个角的边数有增加1、减少1、不变三种情况,∴新多边形的边数为7、5、6三种情况,如图所示.一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条.总结典例精析
多边形的对角线二ABCDE定义:连接多边形不相邻两个顶点的线段叫做多边形的对角线.线段AC是五边形ABCDE的一条对角线,多边形的对角线通常用虚线表示.注意
三角形六边形四边形八边形……五边形探究:请画出下列图形从某一顶点出发的对角线的条数:多边形三角形四边形五边形六边形八边形n边形从同一顶点引出的对角线的条数分割出的三角形的个数01235n-312346n-2
从n(n≥3)边形的一个顶点可以作出(n-3)条对角线.将多边形分成(n-2)个三角形.n(n≥3)边形共有对角线条.归纳总结
画一画:画出下列多边形的全部对角线.
问题2你知道长方形和正方形的内角和是多少度?问题1三角形内角和是多少度?三角形内角和是180°.都是360°.问题3猜想任意四边形的内角和是多少度?多边形的内角和三
猜想:四边形ABCD的内角和是360°.问题4你能用以前学过的知识说明一下你的结论吗?猜想与证明方法1:如图,连接AC,所以四边形被分为两个三角形,所以四边形ABCD内角和为180°×2=360°.ABCD
ABCDE方法2:如图,在CD边上任取一点E,连接AE,DE,所以该四边形被分成三个三角形,所以四边形ABCD的内角和为180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.
方法3:如图,在四边形ABCD内部取一点E,连接AE,BE,CE,DE,把四边形分成四个三角形:△ABE,△ADE,△CDE,△CBE.所以四边形ABCD内角和为:180°×4-(∠AEB+∠AED+∠CED+∠CEB)=180°×4-360°=360°.ABCDE
ABCDP方法4:如图,在四边形外任取一点P,连接PA、PB、PC、PD将四边形变成有一个公共顶点的四个三角形.所以四边形ABCD内角和为180°×3-180°=360°.这四种方法都运用了转化思想,把四边形分割成三角形,转化到已经学了的三角形内角和求解.结论:四边形的内角和为360°.
例2:如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.解:如图,四边形ABCD中,∠A+∠C=180°.∠A+∠B+∠C+∠D=(4-2)×180°=360°,因为∠B+∠D=360°-(∠A+∠C)=360°-180°=180°.所以ABCD如果一个四边形的一组对角互补,那么另一组对角互补.
【变式题】如图,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE∥DF,求证:△DCF为直角三角形.证明:∵在四边形ABCD中,∠A与∠C互补,∴∠ABC+∠ADC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠CDF+∠EBF=90°,∵BE∥DF,∴∠EBF=∠CFD,∴∠CDF+∠CFD=90°,故△DCF为直角三角形.运用了整体思想
ACDEBABCDEF问题5你能仿照求四边形内角和的方法,选一种方法求五边形和六边形内角和吗?内角和为180°×3=540°.内角和为180°×4=720°.
n边形六边形五边形四边形三角形多边形内角和分割出三角形的个数从多边形的一顶点引出的对角线条数图形边数······0n-31231234n-2(n-2)·180º1×180º=180º2×180º=360º3×180º=540º4×180º=720º························由特殊到一般
分割多边形三角形分割点与多边形的位置关系顶点边上内部外部转化思想总结归纳多边形的内角和公式n边形内角和等于(n-2)×180°(n≥3).
例3一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?解:设这个多边形边数为n,则(n-2)•180=360+720,解得n=8,∵这个多边形的每个内角都相等,(8-2)×180°=1080°,∴它每一个内角的度数为1080°÷8=135°.
例4如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.解析:根据五边形的内角和等于540°,由∠C,∠D,∠E的度数可求∠EAB+∠ABC的度数,再根据角平分线的定义可得∠PAB与∠PBA的角度和,进一步求得∠P的度数.可运用了整体思想
解:∵∠EAB+∠ABC+∠C+∠D+∠E=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=∠EAB,同理可得∠ABP=∠ABC,∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°−(∠EAB+∠ABC)=180°−×230°=65°.
多边形的外角和四小刚每跑完一圈,身体转过的角度之和是多少?
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角.如图,∠A的外角是∠1.EBCD12345A多边形所有外角的和叫做这个多边形的外角和.概念学习
如图,在五边形的每个顶点处各取一个外角.问题1:任意一个外角和它相邻的内角有什么关系?问题2:五个外角加上它们分别相邻的五个内角和是多少?EBCD12345A互补5×180°=900°
EBCD12345A五边形外角和=360°=5个平角-五边形内角和=5×180°-(5-2)×180°结论:五边形的外角和等于360°.问题3:这五个平角和与五边形的内角和、外角和有什么关系?
在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形外角和n边形的外角和等于360°.-(n-2)×180°=360°=n个平角-n边形内角和=n×180°AnA2A3A41234nA1思考:n边形的外角和又是多少呢?与边数无关
例5已知一个多边形的每个内角与外角的比都是7:2,求这个多边形的边数.解法一:设这个多边形的内角为7x°,外角为2x°,根据题意得7x+2x=180,解得x=20.即每个内角是140°,每个外角是40°.360°÷40°=9.答:这个多边形是九边形.还有其他解法吗?
解法二:设这个多边形的边数为n,根据题意得解得n=9.答:这个多边形是九边形.
当堂练习1.下列多边形中,不是凸多边形的是()ABCDB2.把一张形状是多边形的纸片剪去其中一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形A
3.九边形的对角线有()A.25条B.31条C.27条D.30条C4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则这是边形.十三5.过八边形的一个顶点画对角线,把这个八边形分割成个三角形.六
6.如图所示,小华从点A出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地点A时,走的路程一共是________米.150
7.一个多边形的内角和不可能是()A.1800°B.540°C.720°D.810°D8.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360°B.540°C.720°D.900°C
9.一个多边形的内角和为1800°,截去一个角后,求得到的多边形的内角和.解:∵1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.
能力提升:如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.解:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°.89
课堂小结多边形定义前提条件是在一个平面内对角线它是多边形的一条重要线段,在今后通常作对角线把多边形的问题转化为三角形和四边形的问题内角和计算公式(n-2)×180°(n≥3的整数)外角和多边形的外角和等于360°特别注意:与边数无关.
相关文档
- 八年级下数学课件:18-2-1 矩形 (共62022-04-0162页
- 八年级下数学课件:18-1-2 平行四边2022-04-0118页
- 八年级下数学课件7-3二次根式的乘2022-04-0110页
- 八年级下数学课件《一次函数》课件2022-04-0112页
- 八年级下数学课件:第十六章 二次根2022-04-0126页
- 八年级下数学课件《6-3正方形的性2022-04-0122页
- 八年级下数学课件:18-2-1 矩形——2022-04-0125页
- 八年级下数学课件21-1《一次函数》2022-04-0158页
- 八年级下数学课件《探索三角形相似2022-04-0113页
- 八年级下数学课件《频率与概率》 (2022-04-0116页