• 366.00 KB
  • 2022-04-01 发布

八年级数学上册第十二章全等三角形12-2三角形全等的判定第3课时角边角角角边教学课件3(新版)新人教版

  • 16页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
12.2三角形全等的判定(第3课时) 1.什么是全等三角形?2.判定两个三角形全等要具备什么条件?复习边边边:三边对应相等的两个三角形全等。边角边:有两边和它们夹角对应相等的两个三角形全等。 一张教学用的三角形硬纸板不小心被撕坏了(如下图),你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?怎么办?可以帮帮我吗?创设情景,实例引入 CBEAD 先任意画出一个△ABC,再画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?探究1 已知:任意△ABC,画一个△A/B/C/,使A/B/=AB,∠A/=∠A,∠B/=∠B:画法:2、在A/B/的同旁画∠DA/B/=∠A,∠EB/A/=∠B,A/D,B/E交于点C/。1、画A/B/=AB;△A/B/C/就是所要画的三角形。问:通过实验可以发现什么事实? 有两角和它们夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。探究反映的规律是: ∠A=∠A’(已知),AB=A’C(已知),∠B=∠C(已知),证明:在△ABE和△A’CD中,所以△ABE≌△A’CD(ASA)。用数学语言表述: 现在就练点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C。求证:△ABE≌△ACD.1.证明:在△ABE和△ACD中,∠B=∠C,AB=AC,∠A=∠A,∴△ABE≌△ACD(ASA). 2.如图,∠1=∠2,∠3=∠4求证:AC=AD1234证明:在△ABD和△ABC中,∠3+∠ABD=∠4+∠ABC=180°∵∠3=∠4∴∠ABD=∠ABC又有∠1=∠2,AB=AB∴△ABD≌△ABC∴AC=AD 在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?探究2ABCDEF 能得到两三角形全等,但不能利用“角边角”判定。引入了一种新的判定三角形全等的方法:有两角和它们中的一边对应相等的两个三角形全等(简写成“角角边”或“AAS”)。 AE=A’D,∠A=∠A’,∠B=∠C,证明:在△ABE和△A’CD中,所以△ABE≌△A’CD(ASA)。用数学语言表述: 如图,∠1=∠2,∠C=∠D,求证:AC=AD证明:12现在就练 如图,∠1=∠2,∠C=∠D求证:AC=AD在△ABD和△ABC中,∠1=∠2(已知),∠D=∠C(已知),AB=AB(公共边),所以△ABD≌△ABC(AAS)。所以AC=AD(全等三角形对应边相等)。证明:12 (1)学习了角边角、角角边;(2)注意角角边、角边角中两角与边的区别;(3)会根据已知两角画三角形;(4)进一步学会用推理证明。小结