- 1.79 MB
- 2022-04-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
JJ版八年级上第十三章全等三角形阶段核心技巧用全等三角形证明五种常见结论的证明技巧
4提示:点击进入习题答案显示671235见习题见习题见习题见习题见习题见习题见习题
1.【中考•陕西】如图,点A,E,F,B在直线l上,AE=BF,AC∥BD,且AC=BD,求证:CF=DE.证明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE.∵AC∥BD,∴∠CAF=∠DBE.又∵AC=BD,∴△ACF≌△BDE(SAS).∴CF=DE.
2.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE交于点G.(1)观察图形,写出图中所有与∠AED相等的角(∠CDE除外);解:∠DAG、∠AFB与∠AED相等.
(2)选择图中与∠AED相等的任意一个角(∠CDE除外)加以证明.
∴△DAE≌△ABF,∴∠ADE=∠BAF.∵∠DAG+∠BAF=90°,∠ADE+∠AED=90°,∴∠DAG=∠AED.
3.两个大小不同的等腰直角三角形三角板如图①放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
解:△ABE≌△ACD,证明如下:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD.
证明:由(1)知△ABE≌△ACD,则∠ACD=∠ABE.又∵∠ABC+∠ACB=90°,∴∠ACD+∠ACB=90°,∴∠BCD=90°.即DC⊥BE.(2)求证:DC⊥BE.
4.如图,已知AE∥DF,CE∥BF,AB=CD,求证:BE∥CF.证明:∵AE∥DF,∴∠A=∠D.∵CE∥BF,∴∠ECA=∠FBD.∵AB=CD,∴AC=DB,∴△AEC≌△DFB(ASA),∴EC=BF.又∵∠ECA=∠FBD,BC=CB,∴△ECB≌△FBC(SAS),∴∠EBC=∠FCB,∴BE∥CF.
5.如图,在△ABC中,AC=BC,∠ACB=90°,D为BC延长线上一点,BF⊥AD于F,交AC于E.(1)求证:BE=AD;(2)过C点作CM∥AB交AD于M,连接EM,求证:BE=AM+EM.【点拨】本题运用了等线段代换法解决线段的和差问题,解决三条线段之间的和差问题一般通过全等转化为证两线段相等.
(1)求证:BE=AD;
(2)过C点作CM∥AB交AD于M,连接EM,求证:BE=AM+EM.
【点拨】本题运用了截长法解决线段的和差问题.截长法是在第三条线段上截取一条线段等于第一条线段,证余下的线段等于第二条线段.本题在AE上截取AF=AB,证EF=DE.6.如图,在四边形ABDE中,C是BD边的中点.若AC平分∠BAE,∠ACE=90°,猜想线段AE,AB,DE满足的数量关系,并证明.
解:AE=AB+DE.证明:如图,在AE上截取AF=AB,连接CF.∵AC平分∠BAE,∴∠BAC=∠CAF.又∵AC=AC,∴△BAC≌△FAC,∴BC=FC,∠ACB=∠ACF.∵∠ACE=90°,∴∠ACF+∠FCE=90°,∠ACB+∠DCE=90°,∴∠FCE=∠DCE.∵C为BD边的中点,∴BC=DC,∴DC=FC.又∵CE=CE,∴△FCE≌△DCE,∴DE=FE,∴AE=AF+FE=AB+DE.
相关文档
- 八年级上数学课件八年级上册数学课2022-04-0118页
- 八年级上数学课件第14章全等三角形2022-04-0117页
- 八年级上数学课件第11章平面直角坐2022-04-0114页
- 八年级上数学课件八年级上册数学课2022-04-0117页
- 八年级上数学课件八年级上册数学课2022-04-0145页
- 八年级上数学课件精品课件人教版八2022-04-0157页
- 八年级上数学课件《全等图形》 (12022-04-0128页
- 八年级上数学课件八年级上册数学课2022-04-0119页
- 八年级上数学课件八年级上册数学课2022-04-0127页
- 八年级上数学课件八年级上册数学课2022-04-0113页