- 98.00 KB
- 2021-10-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
11.1 与三角形的关的线段(第2课时)
教学目标
知识与技能
1.了解三角形的角平分线、高、中线并能在具体情境中作出它们;
2.经历折纸,画图等实践过程认识三角形的高、中线与角平分线.毛
3.会用工具准确画出三角形的高、中线与角平分线, 通过画图了解三角形的三条高(及所在直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.
过程与方法
经历画、折等实践操作活动过程,发展学生的空间观念,推理能力及创新精神。学会用数学知识解决实际问题能力,发展应用和自主探究意识,并培养学生的动手实践能力。
情感态度价值观
通过对问题的解决,使学生有成就感,培养学生的合作精神,树立学好数学的信心。
教学重点
了解三角形的高、中线与角平分线的概念, 会用工具准确画出三角形的高、中线与角平分线.
教学难点
探究三角形的三条高线、角平分线、三条中线交于一点的过程及钝角三角形高的画法.
教学准备
教师:圆规、三角形纸片、三角。
教学过程(师生活动)
设计理念
提出问题
1.什么叫角平分线?如何画一个角的平分线?
2.已知A、B分别是直线l上和直线l外一点,分别过点A、点B画直线l的垂线。 ·B
· l
A
3.三角形按角分类可分为哪几种?
回忆旧知识,通过操作拓展知识,体验高的性质。
探究新知
1.三角形的高的概念
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高
表示方法: 1.AD是△ABC的BC上的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
问题:三角形的高与垂线有何区别和联系?
2.三角形的中线的概念
3
1、 如图,教师给出一个准备好的三角形纸片,把B,C重合对折,折痕与BC交于点D.
问题:(1)D点有什么特殊性?
(2)连接线段AD,AD把△ABC分成的两个三角形的面积有何关系?
(3)请归纳线段AD的特点.
并用语言描述中线定义.
三角形中,连结一个顶点和它对边中的线段叫做三角形的中线
表示方法:1.AE是△ABC的BC上的中线.
2.BE=EC=BC.
问题:你认为一个三角形有几条中线?并分别作出来,你有什么发现?
结论:三条
定义:
三角形的三条中线的交点叫做三角形的重心.
3.三角形的角平分线的概念
如图,教师再给出一个三角形纸片,对折,使AC与AB所在直线重合,折痕与BC交于D.
问题:(1)通过这个操作你认为AD有什么位置特点?
(2)请给出三角形角平分线的定义.
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段叫做三角形角的平分线
表示方法:1.AM是△ABC的∠BAC的平分线.
2.∠1=∠2=∠BAC.
思考:三角形的高、中线和角平分线是代表线段还是代表射线或直线?
通过画、折等实践操作活动理解三角形的角平分线概念,并培养学生动手操作能力,自主探索、合作交流,发现三角形的三条角平分线交于一点的规律
让学生能感知并有一种意识去动手实践,主动探究
3
三角形的高、中线和角平分线都代表线段, 这些线段的一个端点是三角形的一个顶点,另一个端点在这个顶点的对边上.
巩固新知
问题:1、在练习本上画出三角形,并在这个三角形中画出它的三条高.( 如果他们所画的是锐角三角形,接着提出在直角三角形的三条高在哪里?钝角三角形的三条高在那里?)观察这三条高所在的直线的位置有何关系?
三角形的三条高交于一点,锐角三角形三条高交点在直角三角形内,直角三角形三条高线交点在直角三角形顶点,而钝角三角形的三条高的交点在三角形的外部.
2、在练习本上画一个三角形,并在这三角形中画出它的三条角平分线,观察这三条角平分线的位置有何关系?
无论是锐角三角形还是直角三角形或钝角三角形, 它们的三条角平分线都在三角形内,并且交于一点.
3、你认为“三线”定义中,高与线段垂线、三角形角平分线与角的平分线、中线与线段中点有何异同?
课堂练习
1、 AD是△ABC的角平分线,那么∠BAD= =
2、 AE是△ABC的中线,那么BE= = BC
3、 如图3,在△ABC中∠BAC=60度,∠B=45度,AD是∠BAC的角平分线,求∠ADB的度数。
4.如图5,D、E分别是△ABC的边AC、BC的中点,下列说法正确吗?
(1) DE是△BDC的中线。
(2) BD是△ABC的中线
(3) AD=CD、BE=EC
∠C的对边是DE
小结与作业
课堂小结
1、请小组同学回忆一下本课主要内容,由师生共同用较准确语言描述.
2、三线定义.
本课作业
1、 必做题:
2、 选做题
3
相关文档
- 2019秋八年级数学上册第2章三角形22021-10-2717页
- 2020八年级数学上册 专题突破讲练 2021-10-2711页
- 八年级上数学课件- 11-2-1 三角形2021-10-2718页
- 八年级下数学课件《相似三角形的性2021-10-2716页
- 2018秋八年级数学上册第13章全等三2021-10-2731页
- 2019秋八年级数学上册第13章全等三2021-10-2724页
- 华师版数学八年级上册同步练习课件2021-10-2719页
- 2020春八年级数学下册第19章全等三2021-10-2732页
- 2018年秋八年级数学上册17-1等腰三2021-10-2727页
- 三角形的中位线学案2021-10-275页