- 176.00 KB
- 2021-11-01 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第2课时 建立一次函数模型解决预测类型的实际问题
1.在具体情境中,分析变量间的关系,抽象出一次函数模型并会运用所建立的模型进行预测;(重点)
2.根据数据确定一次函数的表达式.(重点)
一、情境导入
“脚印专家”根据脚印的大小,能够推测出罪犯的身高,这是符合科学的.科学家们测量了许多人的身高和脚印长度之后,得出了从脚印长度推算身高的公式:身高(厘米)=脚印长度(厘米)×6.876.在我们的生活中还有很多这样运用到一次函数模型的例子,今天我们将要学习一次函数模型在生活中的应用.[来源:学,科,网Z,X,X,K]
二、合作探究
探究点:建立一次函数模型解决预测类型的实际问题
【类型一】 根据描述或图表信息建立一次函数模型并合理预测
小明练习100米短跑,训练时间与100米短跑成绩记录如下:
时间(月)
1
2
3
4
成绩(秒)
15.6
15.4
15.2
15
(1)请你为小明的100米短跑成绩y(秒)与训练时间x(月)的关系建立函数模型;
(2)用所求出的函数解析式预测小明训练6个月的100米短跑成绩;
(3)能用所求出的函数解析式预测小明训练3年的100米短跑成绩吗?为什么?
解析:(1)由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解;(2)令(1)中的x=6,求出相应y值即可;(3)不能,因为短跑的成绩在短时间内可能呈某种趋势,但在较长的时间内,受自身的发展极限的限制,不会永远如此快的提高.
解:(1)设函数表达式为y=kx+b,依题意得得∴y=-0.2x+15.8;
(2)当x=6时,y=-0.2×6+15.8=14.6.
答:小明训练6个月的100米短跑成绩为14.6秒;
(3)不能,因为短跑的成绩在短时间内可能呈某种趋势,但在较长的时间内,受自身的发展极限的限制,不会永远如此快的提高.
方法总结:根据表格的分析可知函数是随着自变量均匀变化的,由此可知这个函数应是一次函数,利用待定系数法求解即可.在进行预测时要注意如果自变量的取值远离当前值,就不能将自变量代入求值,因为这个一次函数只能预测邻近的数据.
【类型二】 根据图象建立一次函数模型并预测
已知A、B两地的路程为240千米.某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表:
运输费[来源:学*科*网Z*X*X*K]
冷藏费
固定费用
汽车
2
5
200
火车
1.6
5
2280
[来源:Z+xx+k.Com]
(1)汽车的速度为________千米/时,火车的速度为________千米/时;
(2)设每天用汽车和火车运输的总费用分别为y汽(元)和y火(元),分别求y汽、y火与x的函数关系式(不必写出x的取值范围),当x为何值时,y汽>y火(总费用=运输费+冷藏费+固定费用);
(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?
解析:(1)根据点的坐标为(2,120),(2,200),直接得出两车的速度即可;(2)根据货运收费项目及收费标准表、行驶路程s(千米)与行驶时间t(时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.
解:(1)根据图表上点的坐标为(2,120),(2,200),∴汽车的速度为60千米/时,火车的速度为100千米/时;
(2)依据题意得y汽=240×2x+×5x+200=500x+200,y火=240×1.6x+×5x+2280=396x+2280.若y汽>y火,得出500x+200>396x+2280.∴x>20;
(3)上周货运量x=(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.
方法总结:解答预测类问题时,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题.
三、板书设计[来源:学科网ZXXK]
建立一次函数模型解决预测类型的实际问题
1.根据数据确定一次函数表达式
2.利用一次函数等知识进行合理预测,预测时要注意在已知数据邻近预测结果才与事实更好地吻合
在教学过程中要注意根据相关的信息得出函数的表达式,根据表达式进行合理预测,在预测时应提醒学生合理预测的原则,教会学生怎么进行合理预测.