- 349.00 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
正多边形与圆
一.选择题
1. (2020•四川省凉山州•4分)如图,等边三角形ABC和正方形ADEF都内接于⊙O,则AD:AB=( )
A.2: B.: C.: D.:2
【分析】连接OA.OB.OD,过O作OH⊥AB于H,由垂径定理得出AH=BH=AB,证出△AOD是等腰直角三角形,∠AOH=∠BOH=60°,AH=BH=AB,得出AD=OA,AH=OA,则AB=2AH=OA,进而得出答案.
【解答】解:连接OA.OB.OD,过O作OH⊥AB于H,如图所示:
则AH=BH=AB,
∵正方形ABCD和等边三角形AEF都内接于⊙O,
∴∠AOB=120°,∠AOD=90°,
∵OA=OD=OB,
∴△AOD是等腰直角三角形,∠AOH=∠BOH=×120°=60°,
∴AD=OA,AH=OA•sin60°=OA,
∴AB=2AH=2×OA=OA,
∴==,
故选:B.
【点评】本题考查了正多边形和圆、垂径定理、等边三角形的性质、正方形的性质、等腰直角三角形的判定与性质等知识;熟练掌握垂径定理、等边三角形和正方形的性质是解题的关键.
2.(2020山东省德州市4分)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点A时,共走路程为( )
A.80米 B.96米 C.64米 D.48米
【分析】根据多边形的外角和即可求出答案.
【解答】解:根据题意可知,他需要转360÷45=8次才会回到原点,
所以一共走了8×8=64(米).
故选:C.
【点评】本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.
3. 2020年青海省在中,,,,则的内切圆的半径为__________.
【答案】1
【解析】
【详解】如图,设△ABC的内切圆与各边相切于D,E,F,连接OD,OE,OF,
则OE⊥BC,OF⊥AB,OD⊥AC,
设半径为r,CD=r,
∵∠C=90°,BC=4,AC=3,
∴AB=5,
∴BE=BF=4-r,AF=AD=3-r,
∴4-r+3-r=5,
∴r=1.
∴△ABC的内切圆的半径为 1.
4. (2020•山东淄博市•4分)如图,放置在直线l上的扇形OAB.由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径OA=2,∠AOB=45°,则点O所经过的最短路径的长是( )
A.2π+2 B.3π C. D.+2
【分析】利用弧长公式计算即可.
【解答】解:如图,
点O的运动路径的长=的长+O1O2+的长
=++
=,
故选:C.
【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.
二.填空题
1. (2020•四川省成都市•4分)如图,六边形是正六边形,曲线…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按,,,,,循环,且每段弧所对的圆心角均为正六边形的一个外角.当时,曲线的长度是_________.
【答案】
【解析】
【分析】
利用弧长公式,分别计算出,,,,,的长,然后将所有弧长相加即可.
【详解】解:根据题意,得=;
=;
=;
=;
=;
=.
曲线的长度是=.
故答案是:.
【点睛】本题考查的是弧长的计算,熟练运用弧长公式进行计算是解题得关键.
三.解答题
1. . 2020年内蒙古通辽市中心为O的正六边形的半径为.点同时分别从两点出发,以的速度沿向终点运动,连接,设运动时间为.
(1)求证:四边形为平行四边形;
(2)求矩形的面积与正六边形的面积之比.
【答案】(1)见解析;(2)2:3
【解析】
【分析】
(1)只要证明△ABP≌△DEQ(SAS),可得BP=EQ,同理PE=BQ,由此即可证明;
(2)过点B,点E作BN⊥CD,EM⊥CD,连接OC,OD,过点O作OH⊥CD分别求出矩形的面积和正六边形的面积,从而得到结果.
【详解】解:(1)证明:∵中心为O的正六边形ABCDEF的半径为6cm,
∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,
∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,
∴AP=DQ=t,PF=QC=6-t,
在△ABP和△DEQ中,
,
∴△ABP≌△DEQ(SAS),
∴BP=EQ,同理可证PE=QB,
∴四边形PEQB是平行四边形;
(2)由(1)可知四边形PEQB是平行四边形
∴当∠BQE=90°时,四边形PEQB是矩形
过点B,点E作BN⊥CD,EM⊥CD,连接OC,OD,过点O作OH⊥CD
∴∠BNQ=∠QME=90°,
∴∠BQN+∠NBQ=90°,∠BQN+∠EQM=90°
∴∠NBQ=∠EQM
∴△NBQ∽△MQE
∴
又∵正六边形ABCDEF的半径为6,
∴正六边形ABCDEF的各边为6,∠BCQ=∠EDQ=120°
∴在Rt△BNC和Rt△EDM中,∠NBC=∠DEM=30°
∴NC=DM=,BN=EM=
∴,解得:
(舍去)
即当P与F重合,Q与C重合时,四边形PEQB是矩形
此时矩形PEQB的面积为
∵在正六边形ABCDEF中,∠COD=60°,OC=OD
∴△OCD是等边三角形,OC=OD=CD=6,OH=
S六边形ABCDEF=
=
=,
∴S矩形PBQE:S六边形ABCDEF=:=2:3
【点睛】本题考查正多边形、平行四边形的判定和性质、矩形的性质与判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
2. (2020•陕西•8分)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.
(1)求证:AD∥EC;
(2)若AB=12,求线段EC的长.
【分析】(1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;
(2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=8,可证四边形OAFC是正方形,可得CF=AF=4,由锐角三角函数可求EF=12,即可求解.
【解答】证明:(1)连接OC,
∵CE与⊙O相切于点C,
∴∠OCE=90°,
∵∠ABC=45°,
∴∠AOC=90°,
∵∠AOC+∠OCE=180°,
∴∴AD∥EC
(2)如图,过点A作AF⊥EC交EC于F,
∵∠BAC=75°,∠ABC=45°,
∴∠ACB=60°,
∴∠D=∠ACB=60°,
∴sin∠ADB=,
∴AD==8,
∴OA=OC=4,
∵AF⊥EC,∠OCE=90°,∠AOC=90°,
∴四边形OAFC是矩形,
又∵OA=OC,
∴四边形OAFC是正方形,
∴CF=AF=4,
∵∠BAD=90°﹣∠D=30°,
∴∠EAF=180°﹣90°﹣30°=60°,
∵tan∠EAF=,
∴EF=AF=12,
∴CE=CF+EF=12+4.
【点评】本题考查了切线的性质,圆周角定理,锐角三角函数,正方形的判定和性质,熟练运用这些性质进行推理是本题的关键.
3. (2020•陕西•12分)问题提出
(1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是 CF、DE.DF .
问题探究
(2)如图2,AB是半圆O的直径,AB=8.P是上一点,且=2,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
问题解决
(3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
①求y与x之间的函数关系式;
②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.
【分析】(1)证明四边形CEDF是正方形,即可得出结果;
(2)连接OP,由AB是半圆O的直径,=2,得出∠APB=90°,∠AOP=60°,则∠ABP=30°,同(1)得四边形PECF是正方形,得PF=CF,在Rt△APB中,PB=AB•cos∠ABP=4,在Rt△CFB中,BF==
CF,推出PB=CF+BF,即可得出结果;
(3)①同(1)得四边形DEPF是正方形,得出PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,则A′、F、B三点共线,∠APE=∠A′PF,证∠A′PB=90°,得出S△PAE+S△PBF=S△PA′B=PA′•PB=x(70﹣x),在Rt△ACB中,AC=BC=35,S△ACB=AC2=1225,由y=S△PA′B+S△ACB,即可得出结果;
②当AP=30时,A′P=30,PB=40,在Rt△A′PB中,由勾股定理得A′B==50,由S△A′PB=A′B•PF=PB•A′P,求PF,即可得出结果.
【解答】解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,
∴四边形CEDF是矩形,
∵CD平分∠ACB,DE⊥AC,DF⊥BC,
∴DE=DF,
∴四边形CEDF是正方形,
∴CE=CF=DE=DF,
故答案为:CF、DE.DF;
(2)连接OP,如图2所示:
∵AB是半圆O的直径,=2,
∴∠APB=90°,∠AOP=×180°=60°,
∴∠ABP=30°,
同(1)得:四边形PECF是正方形,
∴PF=CF,
在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8×=4,
在Rt△CFB中,BF====CF,
∵PB=PF+BF,
∴PB=CF+BF,
即:4=CF+CF,
解得:CF=6﹣2;
(3)①∵AB为⊙O的直径,
∴∠ACB=∠ADB=90°,
∵CA=CB,
∴∠ADC=∠BDC,
同(1)得:四边形DEPF是正方形,
∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,
∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:
则A′、F、B三点共线,∠APE=∠A′PF,
∴∠A′PF+∠BPF=90°,即∠A′PB=90°,
∴S△PAE+S△PBF=S△PA′B=PA′•PB=x(70﹣x),
在Rt△ACB中,AC=BC=AB=×70=35,
∴S△ACB=AC2=×(35)2=1225,
∴y=S△PA′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;
②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,
在Rt△A′PB中,由勾股定理得:A′B===50,
∵S△A′PB=A′B•PF=PB•A′P,
∴×50×PF=×40×30,
解得:PF=24,
∴S四边形PEDF=PF2=242=576(m2),
∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.
【点评】本题是圆综合题,主要考查了圆周角定理、勾股定理、矩形的判定、正方形的判定与性质、角平分线的性质、旋转的性质、三角函数定义、三角形面积与正方形面积的计算等知识;熟练掌握圆周角定理和正方形的判定与性质是解题的关键.
相关文档
- 2018年中考数学试卷分类汇编:5二元2021-10-2611页
- 2018年中考数学试卷分类汇编:2实数(2021-10-2517页
- 2018年中考数学试卷分类汇编:3整式2021-10-2522页
- 2018年中考数学试卷分类汇编:1有理2021-10-2220页
- 2011年中考数学试卷分类汇编:13 二2021-06-104页
- 中考数学试卷分类汇编解析动态问题2021-05-1318页
- 全国各地中考数学试卷分类汇编专项2021-05-1312页
- 全国各地中考数学试卷分类汇编专项2021-05-1316页
- 最新中考数学试卷分类汇编平移旋转2021-05-1338页
- 中考数学试卷分类汇编32圆的有关性2021-05-1316页