- 1.90 MB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
圆的有关性质
一.选择题
1.(2020•黑龙江省哈尔滨市•3分)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点C,点D在⊙O上,连接AD.CD,OA,若∠ADC=35°,则∠ABO的度数为( )
A.25° B.20° C.30° D.35°
【分析】根据切线的性质和圆周角定理即可得到结论.
【解答】解:∵AB为圆O的切线,
∴AB⊥OA,即∠OAB=90°,
∵∠ADC=35°,
∴∠AOB=2∠ADC=70°,
∴∠ABO=90°﹣70°=20°.
故选:B.
【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.
2.(2020•黑龙江省牡丹江市•3分)如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是( )
A.125° B.130° C.135° D.140°
【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.
【解答】解:连接OA,OB,OC,
∵∠BDC=50°,
∴∠BOC=2∠BDC=100°,
∵,
∴∠BOC=∠AOC=100°,
∴∠ABC=∠AOC=50°,
∴∠ADC=180°﹣∠ABC=130°.
故选:B.
【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.
3.
(2020•广东省广州市•3分)往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )
A. B. C. D.
【答案】C
【解析】
【分析】
过点O作OD⊥AB于D,交⊙O于E,连接OA,根据垂径定理即可求得AD的长,又由⊙O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长.
【详解】解:过点O作OD⊥AB于D,交⊙O于E,连接OA,
由垂径定理得:,
∵⊙O的直径为,
∴,
在中,由勾股定理得:,
∴,
∴油的最大深度为,
故选:.
【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.
4 (2020年内蒙古通辽市3分)7.如图,分别与相切于两点,,则( )
A. B. C. D.
【答案】C
【解析】
【分析】
连接OA.OB,根据切线的性质定理,结合四边形AOBP的内角和为360°,即可推出∠AOB的度数,然后根据圆周角定理,即可推出∠C的度数.
【详解】解:连接OA.OB,
∵直线PA.PB分别与⊙O相切于点A.B,
∴OA⊥PA,OB⊥PB,
∵∠P=72°,
∴∠AOB=108°,
∵C是⊙O上一点,
∴∠ACB=54°.
故选:C.
【点睛】本题主要考查切线的性质、四边形的内角和、圆周角定理,关键在于熟练运用切线的性质,通过作辅助线构建四边形,最后通过圆周角定理即可推出结果.
5. (2020•江苏省常州市•2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A.B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是( )
A.3 B.4 C.5 D.6
【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.
【解答】解:∵CH⊥AB,垂足为H,
∴∠CHB=90°,
∵点M是BC的中点.
∴MH=BC,
∵BC的最大值是直径的长,⊙O的半径是3,
∴MH的最大值为3,
故选:A.
【点评】本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.
6.(2020•河北省•2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,OC.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是( )
A.淇淇说的对,且∠A的另一个值是115°
B.淇淇说的不对,∠A就得65°
C.嘉嘉求的结果不对,∠A应得50°
D.两人都不对,∠A应有3个不同值
【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.
【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.
故∠A′=180°﹣65°=115°.
故选:A.
【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.
7 (2020•湖南省张家界·3分)如图,四边形为的内接四边形,已知为,则的度数为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据圆内接四边形的性质求出∠A,根据圆周角定理计算,得到答案.
【详解】解:∵四边形ABCD是⊙O内接四边形,
∴∠A=180°−∠BCD=60°,
由圆周角定理得,∠BOD=2∠A=120°,
故选:C.
【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.
8 (2020•江苏省淮安市•3分)如图,点A.B.C在⊙O上,∠ACB=54°,则∠ABO的度数是( )
A.54° B.27° C.36° D.108°
【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.
【解答】解:∵∠ACB=54°,
∴圆心角∠AOB=2∠ACB=108°,
∵OB=OA,
∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,
故选:C.
【点评】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.
9. (2020•江苏省南京市•2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是( )
A.(9,2) B.(9,3) C.(10,2) D.(10,3)
【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE.PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.
【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE.PF、PD,延长EP与CD交于点G,
则PE⊥y轴,PF⊥x轴,
∵∠EOF=90°,
∴四边形PEOF是矩形,
∵PE=PF,PE∥OF,
∴四边形PEOF为正方形,
∴OE=OF=PE=OF=5,
∵A(0,8),
∴OA=8,
∴AE=8﹣5=3,
∵四边形OACB为矩形,
∴BC=OA=8,BC∥OA,AC∥OB,
∴EG∥AC,
∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,
∴CG=AE=3,EG=OB,
∵PE⊥AO,AO∥CB,
∴PG⊥CD,
∴CD=2CG=6,
∴DB=BC﹣CD=8﹣6=2,
∵PD=5,DG=CG=3,
∴PG=4,
∴OB=EG=5+4=9,
∴D(9,2).
故选:A.
【点评】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.
10 (2020年滨州市)9.(3分)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )
A.6 B.9 C.12 D.15
【分析】直接根据题意画出图形,再利用垂径定理以及勾股定理得出答案.
【解答】解:如图所示:∵直径AB=15,
∴BO=7.5,
∵OC:OB=3:5,
∴CO=4.5,
∴DC==6,
∴DE=2DC=12.
故选:C.
【点评】此题主要考查了垂径定理和勾股定理,正确得出CO的长是解题关键.
11. (2020•江苏省扬州市•3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则sin∠ADC的值为( )
A. B. C. D.
【分析】首先根据圆周角定理可知,∠ADC=∠ABC,然后在Rt△ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.
【解答】解:连接BC.∵∠ADC和∠ABC所对的弧长都是,∴根据圆周角定理知,∠ADC=∠ABC.在Rt△ACB中,根据锐角三角函数的定义知,sin∠ABC=,∵AC=2,BC=3,∴AB==,∴sin∠ABC==,∴sin∠ADC=.故选A.
【点评】本题考查了圆周角定理,解直角三角形,勾股定理,锐角三角函数的定义,解答本题的关键是利用圆周角定理把求∠ADC的正弦值转化成求∠ABC的正弦值,本题是一道比较不错的习题.
12.(2020•湖北武汉•3分)如图,在半径为3的⊙O中,AB是直径,AC是弦,D是
的中点,AC与BD交于点E.若E是BD的中点,则AC的长是( )
A. B.3 C.3 D.4
【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.
【解答】解:连接OD,交AC于F,
∵D是的中点,
∴OD⊥AC,AF=CF,
∴∠DFE=90°,
∵OA=OB,AF=CF,
∴OF=BC,
∵AB是直径,
∴∠ACB=90°,
在△EFD和△ECB中
∴△EFD≌△ECB(AAS),
∴DF=BC,
∴OF=DF,
∵OD=3,
∴OF=1,
∴BC=2,
在Rt△ABC中,AC2=AB2﹣BC2,
∴AC===4,
故选:D.
【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.
10.
二.填空题
1.(2020•湖北襄阳•3分)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于 60°或120 °.
【分析】根据弦BC垂直平分半径OA,可得OD:OB=1:2,得∠BOC=120°,根据同弧所对圆周角等于圆心角的一半即可得弦BC所对的圆周角度数.
【解答】解:如图,
∵弦BC垂直平分半径OA,
∴OD:OB=1:2,
∴∠BOD=60°,
∴∠BOC=120°,
∴弦BC所对的圆周角等于60°或120°.
故答案为:60°或120°.
【点评】本题考查了圆周角定理、垂径定理、线段垂直平分线的性质,解决本题的关键是掌握圆周角定理.
2.(2020•黑龙江省牡丹江市•3分)AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM=2,则弦AB的长为 12或4 .
【分析】分∠OAM=30°,∠AOM=30°,两种情况分别利用正切的定义求解即可.
【解答】解:∵OM⊥AB,
∴AM=BM,
若∠OAM=30°,
则tan∠OAM=,
∴AM=6,
∴AB=2AM=12;
若∠AOM=30°,
则tan∠AOM=,
∴AM=2,
∴AB=2AM=4.
故答案为:12或4.
【点评】本题考查了垂径定理,三角函数,解题时要根据题意分情况讨论.
3 (2020•江苏省盐城市•3分)如图,在⊙O中,点A在上,∠BOC=100°.则∠BAC= 130 °.
【分析】根据圆周角定理和圆内接四边形的性质即可得到结论.
【解答】解:如图,取⊙O上的一点D,连接BD,CD,
∵∠BOC=100°,∴∠D=50°,∴∠BAC=180°-50°=130°,故答案为:130.
【点评】本题考查了圆周角定理与圆内接四边形的性质,正确作出辅助线是解题的关键.
4 (2020•湖南省长沙市·3分)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.
(1)+= 1 .
(2)若PN2=PM•MN,则= .
【分析】(1)证明△PEN∽△QFN,得①,证明△NPQ∽△PMQ,得②,再①×②得,再变形比例式便可求得结果;
(2)证明△NPQ∽△NMP,得PN2=NQ•MN,结合已知条件得PM=NQ,再根据三角函数得,进而得MQ与NQ的方程,再解一元二次方程得答案.
【解答】解:(1)∵MN为⊙O的直径,
∴∠MPN=90°,
∵PQ⊥MN,
∴∠PQN=∠MPN=90°,
∵NE平分∠PNM,
∴∠MNE=∠PNE,
∴△PEN∽△QFN,
∴,即①,
∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,
∴∠NPQ=∠PMQ,
∵∠PQN=∠PQM=90°,
∴△NPQ∽△PMQ,
∴②,
∴①×②得,
∵QF=PQ﹣PF,
∴=1﹣,
∴+=1,
故答案为:1;
(2)∵∠PNQ=∠MNP,∠NQP=∠NPQ,
∴△NPQ∽△NMP,
∴,
∴PN2=QN•MN,
∵PN2=PM•MN,
∴PM=QN,
∴,
∵tan∠M=,
∴,
∴,
∴NQ2=MQ2+MQ•NQ,即,
设,则x2+x﹣1=0,
解得,x=,或x=﹣<0(舍去),
∴=,
故答案为:.
【点评】本题主要考查了圆的性质,相似三角形的性质与判定,角平分线的定义,关键是灵活地变换比例式.
5(2020•广东省•4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫、老鼠都理想化为同一平面内的线或点,模型如题17图,∠ABC=90°,点M、N分别在射线BA.BC上,MN长度始终不变,MN=4,E为MN的中点,点D到BA.BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________________.
【答案】
【解析】 点B到点E的距离不变,点E在以B为圆心的圆上,线段BD与圆的交点即为所求最短距离的E点,BD=,BE=2
【考点】直角三角形的性质、数学建模思想、最短距离问题
6.(2020年滨州市3分)16.(5分)如图,⊙O是正方形ABCD的内切圆,切点分别为E.F、G、H,ED与⊙O相交于点M,则sin∠MFG的值为 .
【分析】根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形的边的比的问题.
【解答】解:∵⊙O是正方形ABCD的内切圆,
∴AE=AB,EG=BC;
根据圆周角的性质可得:∠MFG=∠MEG.
∵sin∠MFG=sin∠MEG==,
∴sin∠MFG=.
故答案为:.
【点评】本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.
7 (2020•江苏省苏州市•3分)如图,已知是的直径,是的切线,连接交于点,连接.若,则的度数是_________.
【答案】25
【解析】
【分析】
先由切线的性质可得∠OAC=90°,再根据三角形的内角和定理可求出∠AOD=50°,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出∠B的度数.
【详解】解:∵是的切线,
∴∠OAC=90°
∵,
∴∠AOD=50°,
∴∠B=∠AOD=25°
故答案为:25.
【点睛】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键.
8 (2020•江苏省连云港市•3分)如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D.E,则△CDE面积的最小值为 2 .
【分析】如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.首先证明点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.求出MN,当点C与C′重合时,△C′DE的面积最小.
【解答】解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.
∵AC=CB,AM=OM,
∴MC=OB=1,
∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.
∵直线y=x﹣3与x轴、y轴分别交于点D.E,
∴D(4,0),E(0,﹣3),
∴OD=4,OE=3,
∴DE==5,
∵∠MDN=∠ODE,∠MND=∠DOE,
∴△DNM∽△DOE,
∴=,
∴=,
∴MN=,
当点C与C′重合时,△C′DE的面积最小,最小值=×5×(﹣1)=2,
故答案为2.
【点评】本题考查三角形的中位线定理,三角形的面积,一次函数的性质等知识,解题的关键是学会添加常用辅助线,构造三角形的中位线解决问题,属于中考常考题型.
9(2020•贵州省贵阳市•4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是 120 度.
【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.
【解答】解:连接OA,OB,
∵△ABC是⊙O的内接正三角形,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵∠CAB=60°,
∴∠OAD=30°,
∴∠OAD=∠OBE,
∵AD=BE,
∴△OAD≌△OBE(SAS),
∴∠DOA=∠BOE,
∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,
故答案为:120.
【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.
10.(2020•贵州省遵义市•4分)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是____.
【分析】连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,根据圆周角定理可得∠BOC=90°,根据等腰直角三角形的性质和勾股定理可得DG,AG,可求AD,再根据相交弦定理可求DE.
【解答】
解:连结OB,OC,OA,过O点作OF⊥BC于F,作OG⊥AE于G,
∵⊙O是△ABC的外接圆,∠BAC=45°,
∴∠BOC=90°,
∵BD=4,CD=1,
∴BC=4+1=5,
∴OB=OC=,
在Rt△AGO中,
∴AD×DE=BDXCD,
故答案为:
三.解答题
1.(2020•河南省•10分)小亮在学习中遇到这样一个问题:
如图,点D是上一动点,线段BC=8cm,点A是线段BC的中点,过点C作CF∥BD,交DA的延长线于点F.当△DCF为等腰三角形时,求线段BD的长度.
小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:
(1)根据点D在上的不同位置,画出相应的图形,测量线段BD,CD,FD的长度,得到下表的几组对应值.
BD/cm
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
CD/cm
8.0
7.7
7.2
6.6
5.9
a
3.9
2.4
0
FD/cm
8.0
7.4
6.9
6.5
6.1
6.0
6.2
6.7
8.0
操作中发现:
①“当点D为的中点时,BD=5.0cm”.则上表中a的值是 5 ;
②“线段CF的长度无需测量即可得到”.请简要说明理由.
(2)将线段BD的长度作为自变量x,CD和FD的长度都是x的函数,分别记为yCD和yFD,并在平面直角坐标系xOy中画出了函数yFD的图象,如图所示.请在同一坐标系中画出函数yCD的图象;
(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当△DCF为等腰三角形时,线段BD长度的近似值(结果保留一位小数).
【分析】(1)①由=可求BD=CD=a=5cm;
②由“AAS”可证△BAD≌△CAF,可得BD=CF,即可求解;
(2)由题意可画出函数图象;
(3)结合图象可求解.
【解答】解:(1)∵点D为的中点,
∴=,
∴BD=CD=a=5cm,
故答案为:5;
(2)∵点A是线段BC的中点,
∴AB=AC,
∵CF∥BD,
∴∠F=∠BDA,
又∵∠BAD=∠CAF,
∴△BAD≌△CAF(AAS),
∴BD=CF,
∴线段CF的长度无需测量即可得到;
(3)由题意可得:
(4)由题意画出函数yCF的图象;
由图象可得:BD=3.8cm或5cm或6.2cm时,△DCF为等腰三角形.
【点评】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,动点问题的函数图象探究题,也考查了函数图象的画法,解题关键是数形结合.
2.(2020•贵州省贵阳市•10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.
(1)求证:AD=CD;
(2)若AB=4,BF=5,求sin∠BDC的值.
【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;
(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.
【解答】解:(1)证明:∵∠CAD=∠ABD,
又∵∠ABD=∠ACD,
∴∠ACD=∠CAD,
∴AD=CD;
(2)∵AF是⊙O的切线,
∴∠FAB=90°,
∵AB是⊙O的直径,
∴∠ACB=∠ADB=∠ADF=90°,
∴∠ABD+∠BAD=∠BAD+∠FAD=90°,
∴∠ABD=∠FAD,
∵∠ABD=∠CAD,
∴∠FAD=∠EAD,
∵AD=AD,
∴△ADF≌△ADE(ASA),
∴AF=AE,DF=DE,
∵AB=4,BF=5,
∴AF=,
∴AE=AF=3,
∵,
∴,
∴DE=,
∴BE=BF﹣2DE=,
∵∠AED=∠BEC,∠ADE=∠BCE=90°,
∴△BEC∽△AED,
∴,
∴,
∴,
∵∠BDC=∠BAC,
∴.
【点评】本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.
3.
(2020•湖南省长沙市·10分)如图,半径为4的⊙O中,弦AB的长度为4,点C是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE.OD.OE.
(1)求∠AOB的度数;
(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;
(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.
【分析】(1)如图1中,过点O作OH⊥AB于H.利用等腰三角形的性质求出∠AOH即可.
(2)连接OC,证明O,D,C,F四点共圆,OC的中点即为△ODE外接圆的圆心,再利用弧长公式计算即可.
(3)如图3中,若AC<BC,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.证明△CDE∽△CAB,推出=()2=,推出S△ABC=4S2,因为S△ADO=S△ODC,S△OBE=S△OEC,推出S四边形ODCE=S四边形OACB,可得S1+S2=(4S2+4)=2S2+2,推出S1=S2+2,因为S12﹣S22=21,可得S22+4S2+12﹣S22
=21,推出S2=,利用三角形的面积公式求出CK,解直角三角形求出AK即可解决问题.若AC>BC时,同法可得AC=+,
【解答】解:(1)如图1中,过点O作OH⊥AB于H.
∵OA=OB=4,OH⊥AB,
∴AH=HB=AB=2,∠AOH=∠BOH,
∴sin∠AOH==,
∴∠AOH=60°,
∴∠AOB=2∠AOH=120°.
(2)如图2中,连接OC.
∵OA=OC=OB,AD=DC,CE=EB,
∴OD⊥AC,OE⊥CB,
∴∠ODC=∠OEC=90°,
∴∠ODC+∠OEC=180°,
∴O,D,C,E四点共圆,
∴OC是直径,
∴OC的中点P是△OED的外接圆的圆心,
∴OP=OC=2,
∴点P的运动路径的长==.
(3)如图3中,若AC<BC,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.
∵AD=CD,CE=EB,
∴DE∥AB,AB=2DE,
∴△CDE∽△CAB,
∴=()2=,
∴S△ABC=4S2,
∵S△ADO=S△ODC,S△OBE=S△OEC,
∴S四边形ODCE=S四边形OACB,
∴S1+S2=(4S2+4)=2S2+2,
∴S1=S2+2,
∵S12﹣S22=21,
∴S22+4S2+12﹣S22=21,
∴S2=,
∴S△ABC=3=×AB×CK,
∴CK=,
∵OH⊥AB,CK⊥AB,
∴OH∥CK,
∴△CKJ∽△OHJ,
∴=,
∴==,
∴CJ=×4=,OJ=×4=,
∴JK===,JH===,
∴KH=,
∴AK=AH﹣KH=2﹣,
∴AC====﹣.
若AC>BC时,同法可得AC=+,
综上所述,AC的长为﹣或+.
【点评】本题属于圆综合题,考查了等腰三角形的性质,相似三角形的判定和性质,一元二次方程,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.
4. (2020•湖南省怀化市)定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ④ ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.
【分析】(1)根据垂等四边形的性质对每个图形判断即可;
(2)根据已知条件可证明四边形ACED是平行四边形,即可得到AC=DE,再根据等腰直角三角形的性质即可得到结果;
(3)过点O作OE⊥BD,根据面积公式可求得BD的长,根据垂径定理和锐角三角函数即可得到⊙O的半径.
【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;
②矩形对角线相等但不垂直,故不是垂等四边形;
③菱形的对角线互相垂直但不相等,故不是垂等四边形;
④正方形的对角线互相垂直且相等,故正方形是垂等四边形;
故选:④;
(2)∵AC⊥BD,ED⊥BD,
∴AC∥DE,
又∵AD∥BC,
∴四边形ADEC是平行四边形,
∴AC=DE,
又∵∠DBC=45°,
∴△BDE是等腰直角三角形,
∴BD=DE,
∴BD=AC,
又∵BD⊥AC,
∴四边形ABCD是垂等四边形;
(3)如图,过点O作OE⊥BD,
∵四边形ABCD是垂等四边形,
∴AC=BD,
又∵垂等四边形的面积是24,
∴AC•BD=24,
解得,AC=BD=4,
又∵∠BCD=60°,
∴∠DOE=60°,
设半径为r,根据垂径定理可得:
在△ODE中,OD=r,DE=,
∴r===4,
∴⊙O的半径为4.
【点评】本题是一道圆的综合题,主要考查了平行四边形的性质、菱形的性质、矩形的性质、正方形的性质、新定义、圆周角定理、垂径定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用新定义解答问题.
5.(2020•黑龙江省哈尔滨市•10分)已知:⊙O是△ABC的外接圆,AD为⊙O的直径,AD⊥BC,垂足为E,连接BO,延长BO交AC于点F.
(1)如图1,求证:∠BFC=3∠CAD;
(2)如图2,过点D作DG∥BF交⊙O于点G,点H为DG的中点,连接OH,求证:BE=OH;
(3)如图3,在(2)的条件下,连接CG,若DG=DE,△AOF的面积为,求线段CG的长.
【分析】(1)由垂径定理可得BE=EC,由线段垂直平分线的性质可得AB=AC,由等腰三角形的性质可得∠BAD=∠ABO=∠CAD,由外角的性质可得结论;
(2)由“AAS”可证△BOE≌△ODH,可得BE=OH;
(3)过点F作FN⊥AD,交AD于N,设DG=DE=2x,由全等三角形的性质可得OE=DH=x,OD=3x=OA=OB,勾股定理可求BE=2x,由锐角三角函数可求AN=
NF,ON=NF,可得AO=AN+ON=NF,由三角形面积公式可求NF的长,可求x=1,可得BE=2=OH,AE=4,DG=DE=2,勾股定理可求AC=2,连接AG,过点A作AM⊥CG,交GC的延长线于M,通过证明△ACM∽△ADG,由相似三角形的性质可求AM,CM的长,由勾股定理可求GM的长,即可求解.
【解答】证明:(1)∵AD为⊙O的直径,AD⊥BC,
∴BE=EC,
∴AB=AC,
又∵AD⊥BC,
∴∠BAD=∠CAD,
∵OA=OB,
∴∠BAD=∠ABO,
∴∠BAD=∠ABO=∠CAD,
∵∠BFC=∠BAC+∠ABO,
∴∠BFC=∠BAD+∠EAD+∠ABO=3∠CAD;
(2)如图2,连接AG,
∵AD是直径,
∴∠AGD=90°,
∵点H是DG中点,
∴DH=HG,
又∵AO=DO,
∴OH∥AG,AG=2OH,
∴∠AGD=∠OHD=90°,
∵DG∥BF,
∴∠BOE=∠ODH,
又∵∠OEB=∠OHD=90°,BO=DO,
∴△BOE≌△ODH(AAS),
∴BE=OH;
(3)如图3,过点F作FN⊥AD,交AD于N,
设DG=DE=2x,
∴DH=HG=x,
∵△BOE≌△ODH,
∴OE=DH=x,
∴OD=3x=OA=OB,
∴BE===2x,
∵∠BAE=∠CAE,
∴tan∠BAE=tan∠CAE=,
∴=,
∴AN=NF,
∵∠BOE=∠NOF,
∴tan∠BOE=tan∠NOF=,
∴=,
∴ON=NF,
∴AO=AN+ON=NF,
∵△AOF的面积为,
∴×AO×NF=×NF2=,
∴NF=,
∴AO=NF=3=3x,
∴x=1,
∴BE=2=OH,AE=4,DG=DE=2,
∴AC===2,
如图3,连接AG,过点A作AM⊥CG,交GC的延长线于M,
由(2)可知:AG=2OH=4,
∵四边形ADGC是圆内接四边形,
∴∠ACM=∠ADG,
又∵∠AMC=∠AGD=90°,
∴△ACM∽△ADG,
∴,
∴,
∴CM=,AM=,
∴GM===,
∴CG=GM﹣CM=.
【点评】本题是圆的综合题,考查了圆的有关知识,全等三角形的判定和性质,三角形中位线定理,相似三角形的判定和性质,锐角三角函数等知识,求出NF的长是本题的关键.
6(2020•湖北武汉•8分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.
(1)求证:AD平分∠BAE;
(2)若CD=DE,求sin∠BAC的值.
【分析】(1)连接OD,如图,根据切线的性质得到OD⊥DE,则可判断OD∥AE,从而得到∠1=∠ODA,然后利用∠2=∠ODA得到∠1=∠2;
(2)连接BD,如图,利用圆周角定理得到∠ADB=90°,再证明∠2=∠3,利用三角函数的定义得到sin∠1=,sin∠3=,则AD=BC,设CD=x,BC=AD=y,证明△CDB∽△CBA,利用相似比得到x:y=y:(x+y),然后求出x、y的关系可得到sin∠BAC的值.
【解答】(1)证明:连接OD,如图,
∵DE为切线,
∴OD⊥DE,
∵DE⊥AE,
∴OD∥AE,
∴∠1=∠ODA,
∵OA=OD,
∴∠2=∠ODA,
∴∠1=∠2,
∴AD平分∠BAE;
(2)解:连接BD,如图,
∵AB为直径,
∴∠ADB=90°,
∵∠2+∠ABD=90°,∠3+∠ABD=90°,
∴∠2=∠3,
∵sin∠1=,sin∠3=,
而DE=DC,
∴AD=BC,
设CD=x,BC=AD=y,
∵∠DCB=∠BCA,∠3=∠2,
∴△CDB∽△CBA,
∴CD:CB=CB:CA,即x:y=y:(x+y),
整理得x2+xy+y2=0,解得x=y或x=y(舍去),
∴sin∠3==,
即sin∠BAC的值为.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和解直角三角形.
7.(2020•湖北襄阳•8分)如图,AB是⊙O的直径,E,C是⊙O上两点,且=,连接AE,AC.过点C作CD⊥AE交AE的延长线于点D.
(1)判定直线CD与⊙O的位置关系,并说明理由;
(2)若AB=4,CD=,求图中阴影部分的面积.
【分析】(1)连接OC,根据=,求得∠CAD=∠BAC,根据等腰三角形的性质得到∠BAC=∠ACO,推出AD∥OC,根据平行线的性质得到OC⊥CD,于是得到CD是⊙O的切线;
(2)连接OE,连接BE交OC于F,根据垂径定理得到OC⊥BE,BF=EF
,由圆周角定理得到∠AEB=90°,根据矩形的性质得到EF=CD=,根据勾股定理得到AE===2,求得∠AOE=60°,连接CE,推出CE∥AB,根据三角形和扇形的面积公式即可得到结论.
【解答】(1)证明:连接OC,
∵=,
∴∠CAD=∠BAC,
∵OA=OC,
∴∠BAC=∠ACO,
∴∠CAD=∠ACO,
∴AD∥OC,
∵AD⊥CD,
∴OC⊥CD,
∴CD是⊙O的切线;
(2)解:连接OE,连接BE交OC于F,
∵=,
∴OC⊥BE,BF=EF,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠FED=∠D=∠EFC=90°,
∴四边形DEFC是矩形,
∴EF=CD=,
∴BE=2,
∴AE===2,
∴AE=AB,
∴∠ABE=30°,
∴∠AOE=60°,
∴∠BOE=120°,
∵=,
∴∠COE=∠BOC=60°,
连接CE,
∵OE=OC,
∴△COE是等边三角形,
∴∠ECO=∠BOC=60°,
∴CE∥AB,
∴S△ACE=S△COE,
∵∠OCD=90°,∠OCE=60°,
∴∠DCE=30°,
∴DE=CD=1,
∴AD=3,
∴图中阴影部分的面积=S△ACD﹣S扇形COE=3﹣=﹣.
【点评】本题考查了直线与圆的位置关系,勾股定理,垂径定理,扇形的面积的计算,正确的作出辅助线是解题的关键.
8(2020•广东省•8分)如题22图,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.
(1)求证:直线CD与⊙O相切;
(2)如题22﹣2图,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2,求tan∠APE的值.
E
【答案】
(1) 证明:过点O作OE⊥CD交于点E
∵AD∥BC,∠DAB=90°
∴∠OBC=90°即OB⊥BC
∵OE⊥CD,OB⊥BC,CO平分∠BCD
∴OB=OE
∵AB是⊙O的直径
∴OE是⊙O的半径
∴直线CD与⊙O相切
(2)连接OD.OE
∵由(1)得,直线CD.AD.BC与⊙O相切
∴由切线长定理可得AD=DE=1,BC=CE=3,
∠ADO=∠EDO,∠BCO=∠ECO
∴∠AOD=∠EOD,CD=3
∵=
∴∠APE=∠AOE=∠AOD
∵AD∥BC
∴∠ADE+∠BCE=180°
∴∠EDO+∠ECO=90°即∠DOC=90°
∵OE⊥DC,∠ODE=∠CDO
∴△ODE∽△CDO
∴即
∴OD=
∵在Rt△AOD中,AO=
∴tan∠AOD==
∴tan∠APE=
【解析】无切点作垂直证半径,切线长定理,直角三角形的判定,相似三角形的运用、辅助线的作法
【考点】切线的判定、切线长定理、圆周角定理、相似三角形、三角函数
http://www.czsx.com.cn
9(2020•湖北孝感•10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.
(1)如图1,若α=60°,
①直接写出的值为 ;
②当⊙O的半径为2时,直接写出图中阴影部分的面积为 ﹣π ;
(2)如图2,若α<60°,且=,DE=4,求BE的长.
【分析】(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,
得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;
②根据阴影部分的面积=S梯形AODF﹣S扇形OAD=代入可得结论;
(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.
【解答】解:(1)如图1,连接OA,AD,
∵AF是⊙O的切线,
∴∠OAF=90°,
∵AB=AC,∠BAC=60°,
∴△ABC是等边三角形,
∴∠ABC=∠ACB=∠BAC=60°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=30°,
∵∠ADB=∠ACB=60°,
∴∠BAD=90°,
∴BD是⊙O的直径,
∵OA=OB=OD,
∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,
∵∠BDC=∠BAC=60°,
∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,
∴OA∥DF,
∴∠F=180°﹣∠OAF=90°,
∵∠DAF=30°,
∴AD=2DF,
∵∠ABD=∠CBD,
∴,
∴AD=CD,
∴CD=2DF,
∴=,
故答案为:;
②∵⊙O的半径为2,
∴AD=OA=2,DF=1,
∵∠AOD=60°,
∴阴影部分的面积为:S梯形AODF﹣S扇形OAD=﹣==π;
故答案为:π;
(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,
∴∠DAH+∠DHA=90°,
∵AF与⊙O相切,
∴∠DAH+∠DAF=∠FAO=90°,
∴∠DAF=∠DHA,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵,
∴∠CAD=∠DHA=∠DAF,
∵AB=AC,
∴∠ABC=∠ACB,
∵四边形ABCD内接于⊙O,
∴∠ABC+∠ADC=180°,
∵∠ADF+∠ADC=180°,
∴∠ADF=∠ABC,
∵∠ADB=∠ACB=∠ABC,
∴∠ADF=∠ADB,
在△ADF和△ADE中
∵,
∴△ADF≌△ADE(ASA),
∴DF=DE=4,
∵,
∴DC=6,
∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,
∴△CDE∽△BDC,
∴,即,
∴BD=9,
∴BE=DB﹣DE=9﹣5=5.
【点评】本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.
10. (2020•江苏省苏州市•10分)如图,已知,是的平分线,是射线上一点,.动点从点出发,以的速度沿水平向左作匀速运动,与此同时,动点从点出发,也以的速度沿竖直向上作匀速运动.连接,交于点.经过、、三点作圆,交于点,连接、.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出
的值;若不存在,说明理由.
(3)求四边形的面积.
【答案】(1)8cm;(2)存在,当t=4时,线段OB的长度最大,最大为;(3)
【解析】
【分析】
(1)根据题意可得,,由此可求得的值;
(2)过作,垂足为,则,设线段的长为,可得,,,根据可得,进而可得,由此可得,由此可得,则可得到答案;
(3)先证明是等腰直角三角形,由此可得,再利用勾股定理可得,最后根据四边形的面积即可求得答案.
【详解】解:(1)由题可得:,.
∴.
(2)当时,线段的长度最大.
如图,过作,垂足为,则.
∵平分,
∴,
∴,.
设线段的长为,
则,,.
∵,
∴,
∴,
∴,
解得:.
∴.
∴当时,线段的长度最大,最大为.
(3)∵,
∴是圆的直径.
∴.
∵,
∴是等腰直角三角形.
∴
.
在中,.
∴四边形的面积
.
∴四边形的面积为.
【点睛】本题考查了相似三角形的判定及性质,直径的判定及性质,二次函数的最值问题等相关知识,熟练掌握相关知识是解决本题的关键.
11 (2020•江苏省南京市•8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A.C.D,交BC于点E,过点D作DF∥BC,交⊙O于点F.
求证:(1)四边形DBCF是平行四边形;
(2)AF=EF.
【分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;
(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.
【解答】证明:(1)∵AC=BC,
∴∠BAC=∠B,
∵DF∥BC,
∴∠ADF=∠B,
∵∠BAC=∠CFD,
∴∠ADF=∠CFD,
∴BD∥CF,
∵DF∥BC,
∴四边形DBCF是平行四边形;
(2)连接AE,
∵∠ADF=∠B,∠ADF=∠AEF,
∴∠AEF=∠B,
∵四边形AECF是⊙O的内接四边形,
∴∠ECF+∠EAF=180°,
∵BD∥CF,
∴∠ECF+∠B=180°,
∴∠EAF=∠B,
∴∠AEF=∠EAF,
∴AE=EF.
【点评】本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.
12. (2020•江苏省南京市•9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A.B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.
(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.
为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.
(2)如果在A.B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).
①生态保护区是正方形区域,位置如图③所示;
②生态保护区是圆形区域,位置如图④所示.
【分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;
(2)①由(1)的结论可求;
②由(1)的结论可求解.
【解答】证明:(1)如图②,连接A'C',
∵点A,点A'关于l对称,点C在l上,
∴CA=CA',
∴AC+BC=A'C+BC=A'B,
同理可得AC'+C'B=A'C'+BC',
∵A'B<A'C'+C'B,
∴AC+BC<AC'+C'B;
(2)如图③,
在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);
如图④,
在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)
【点评】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.
13.(2020•湖南省常德•8分)如图,已知AB是⊙O的直径,C是⊙O上的一点,D是AB上的一点,DE⊥AB于D,DE交BC于F,且EF=EC.
(1)求证:EC是⊙O的切线;
(2)若BD=4,BC=8,圆的半径OB=5,求切线EC的长.
【分析】(1)连接OC,由等腰三角形的性质和直角三角形的性质可得∠OCB+∠ECF=90°,可证EC是⊙O的切线;
(2)由勾股定理可求AC=6,由锐角三角函数可求BF=5,可求CF=3,通过证明△OAC∽△ECF,可得,可求解.
【解答】解:(1)连接OC,
∵OC=OB,
∴∠OBC=∠OCB,
∵DE⊥AB,
∴∠OBC+∠DFB=90°,
∵EF=EC,
∴∠ECF=∠EFC=∠DFB,
∴∠OCB+∠ECF=90°,
∴OC⊥CE,
∴EC是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ACB=90°,
∵OB=5,
∴AB=10,
∴AC===6,
∵cos∠ABC=,
∴,
∴BF=5,
∴CF=BC﹣BF=3,
∵∠ABC+∠A=90°,∠ABC+∠BFD=90°,
∴∠BFD=∠A,
∴∠A=∠BFD=∠ECF=∠EFC,
∵OA=OC,
∴∠OCA=∠A=∠BFD=∠ECF=∠EFC,
∴△OAC∽△ECF,
∴,
∴EC===.
【点评】本题考查了相似三角形的判定和性质,圆的有关性质,切线的判定和性质,锐角三角函数等知识,证明△OAC∽△ECF是本题的关键.
14.(2020•湖南省郴州•8分)如图,内接于⊙,是⊙的直径.直线与⊙相切于点,在上取一点使得.线段,的延长线交于点.
(1)求证:直线是⊙的切线;
(2)若,,求阴影部分的面积(结果保留).
【答案】(1)见解析;(2)
【解析】
【分析】
(1)连接OC,根据OA=OC,DA=DC可得∠OAC=∠OCA,∠DAC=∠DCA,再根据直线与⊙相切于点可得∠DAO=90°,进而可得∠DCO=90°,由此可证得直线是⊙的切线;
(2)先证明BOC为等边三角形,可得OB=OC=BC=2,根据扇形面积公式可求得,再利用含30°的直角三角形的性质及勾股定理可求得,由此可求得,最后便可得.
【详解】(1)证明:连接OC,
∵OA=OC,
∴∠OAC=∠OCA,
∵DA=DC,
∴∠DAC=∠DCA,
∵直线与⊙相切于点,
∴∠DAO=90°,
∴∠DAC+∠OAC=90°,
∴∠DCA+∠OCA=90°,
∴∠DCO=90°,
∴OC⊥DC,
又∵点C在⊙上,
∴直线是⊙的切线;
(2)解:∵∠CAB=30°,
∴∠COB=2∠CAB=60°,
又∵OB=OC,
∴BOC为等边三角形,
∴OB=OC=BC=2,
∴,
∵∠OCE=90°,∠COB=60°,
∴∠E=90°-∠COB=30°,
∴OE=2OC=4,
∴在RtCOE中,,
∴
,
∴
∴阴影部分的面积为.
【点睛】本题考查了切线的性质与判定、扇形的面积公式以及含30°的直角三角形的性质,勾股定理,熟练掌握切线的性质与判定、扇形的面积公式是解决本题的关键.
15. (2020•江苏省泰州市•10分)如图,在⊙O中,点P为的中点,弦AD.PC互相垂直,垂足为M,BC分别与AD.PD相交于点E.N,连接BD.MN.
(1)求证:N为BE的中点.
(2)若⊙O的半径为8,的度数为90°,求线段MN的长.
【分析】(1)根据圆周角定理得:∠ADP=∠BCP,由三角形的内角和定理和平角的定义得:∠DNE=∠EMC=90°=∠DNB,最后由等腰三角形的判定和性质可得结论;
(2)连接OA,OB,AB,AC,先根据勾股定理得AB=8,再证明MN是△AEB的中位线,可得MN的长.
【解答】(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,
∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,
∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,
∴N为BE的中点;
(2)解:连接OA,OB,AB,AC,
∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,
由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.
【点评】
本题考查了圆周角定理,勾股定理,等腰三角形的判定和性质,三角形的内角和定理等知识,解题的关键是学会添加常用辅助线构造等腰直角三角形解决问题,属于中考常考题.
16
. (2020年内蒙古通辽市)22.如图,的直径交弦(不是直径)于点P,且.求证:.
【答案】见解析
【解析】
【分析】
连接AC和BD,证明△PAC∽△PDB,得到,再根据得到,从而得到PC=PD,根据垂径定理得出结果.
【详解】解:连接AC和BD,
在△PAC和△PBD中,
∠A=∠D,∠C=∠B,
∴△PAC∽△PDB,
∴,
∴,
∵,
∴,
∴PC=PD,
∵AB为直径,
∴AB⊥CD.
【点睛】本题考查了圆周角定理,相似三角形的判定和性质,垂径定理,解题的关键是证明△PAC∽△PDB,得到.
相关文档
- 2011年全国各地100份中考数学试卷2021-11-0612页
- 2020全国中考数学试卷分类汇编(2)2021-11-0611页
- 2020全国中考数学试卷分类汇编(2)2021-11-0613页
- 2018年中考数学试卷分类汇编:5二元2021-10-2611页
- 2018年中考数学试卷分类汇编:2实数(2021-10-2517页
- 2018年中考数学试卷分类汇编:3整式2021-10-2522页
- 2018年中考数学试卷分类汇编:1有理2021-10-2220页
- 2011年中考数学试卷分类汇编:13 二2021-06-104页
- 中考数学试卷分类汇编解析动态问题2021-05-1318页
- 全国各地中考数学试卷分类汇编专项2021-05-1312页