- 168.95 KB
- 2022-04-02 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二章实数一.选择题1.在实数,,﹣,0.0,π,,0.301300130001…(3与1之间依次增加一个0)中,无理数的个数为( )A.3B.4C.5D.62.4的算术平方根是( )A.±2B.2C.±16D.163.的平方根是( )A.±5B.5C.±D.4.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为( )A.4B.16C.3D.95.如果a,b,c满足|a﹣2|++(c﹣3)2=0,则a+b﹣c的值为( )A.5B.5+C.5+5D.5﹣56.下列说法正确的是( )A.是2的平方根B.﹣1的立方根是1C.1的平方根是1D.﹣3没有立方根7.有一个数值转换器,原理如图所示,当输入的数x为﹣512时,输出的数y的值是( )A.﹣B.C.﹣2D.28.若的整数部分为x,小数部分为y,则x﹣y的值是( )A.1B.C.3﹣3D.39.已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是( )A.1B.2C.3D.410.计算( )A.2B.C.D.3二.填空题11.已知某数的一个平方根是,那么它的另一个平方根是 .12.已知:≈1.421267…,≈4.494441…,则(精确到0.1)≈ .13.已知≈1.2639,≈2.7629,则≈ .14.若x2=(﹣5)2,=﹣5,那么x+y的值是 .15.①= .②= .③写出﹣和之间的所有整数 .16.比较大小:2 4.17.若|x|=,则实数x= .18.如图,长方形OABC放在数轴上,OA=2,OC=1,以A为圆心,AC长为半径画弧交数轴于P点,则P点表示的数为 .
19.式子在实数范围内有意义,则x的取值范围是 .20.已知a≥﹣1,化简= .三.解答题21.无限循环小数如何化为分数呢?请你仔细阅读下列资料:由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几等等的数.转化时需要先去掉无限循环小数的“无限小数部分”.一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍…使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了.例题:例如把0.和0.2化为分数请用以上方法解决下列问题(1)把0.化为分数(2)把0.3化为分数.22.定义:等号两边都是整式,只含有⼀个未知数,且未知数的最高次数是2的⽅程,叫做⼀元⼆次⽅程.如x2=9,(x﹣2)2=4,3x2+2x﹣1=0…都是⼀元⼆次⽅程.根据平⽅根的特征,可以将形如x2=a(a≥0)的⼀元⼆次⽅程转化为⼀元⼀次⽅程求解.如:解⽅程x2=9的思路是:由x=±,可得x1=3,x2=﹣3.解决问题:(1)解⽅程(x﹣2)2=4.解:∵x﹣2=±,∴x﹣2=2,或x﹣2= .∴x1=4,x2= .(2)解⽅程:(3x﹣1)2﹣25=0.23.已知2a﹣1的平方根是,3a+b﹣1的算术平方根是6,求a+4b的平方根.24.已知某正数的两个平方根分别是﹣1和a﹣4,b﹣12的立方根为2.(1)求a,b的值.(2)求a+b的平方根.
25.求出下列x的值:(1)4x2﹣16=0;(2)3(x+1)3=24.26.如果有理数a、b、c在数轴上的位置如图所示,根据图回答下列问题:(1)比较大小:a﹣1 0;b+1 0;c+1 0;(2)化简﹣|a﹣1|+|b+1|+|c+1|.27.计算:(1)2﹣2+;(2)×﹣;(3);(4)(π﹣3)0+(﹣)﹣1+|﹣|+.28.计算:(1)(+10)+(﹣11.5)+(﹣10)﹣4.5;(2)(﹣6)2×(﹣)﹣23;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25);(4)﹣+6÷(﹣)×.29.操作探究:已知在纸面上有一数轴(如图所示)(1)折叠纸面,使表示的点1与﹣1重合,则﹣2表示的点与 表示的点重合;(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数 表示的点重合;②表示的点与数 表示的点重合;③若数轴上A、B两点之间距离为9(A在B的左侧),且A、B两点经折叠后重合,此时点A表示的数是 、点B表示的数是 (3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,求a的值.
30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2,善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)若a+4=(m+n)2,且a、m、n均为正整数,求a的值;(3)化简:.
参考答案一.选择题1.【解答】解:=2,,﹣,0.0都是有理数,而π,,0.301300130001…(3与1之间依次增加一个0)都是无限不循环小数,因此是无理数,所以无理数的个数有3个,故选:A.2.【解答】解:∵22=4,∴4的算术平方根是2.故选:B.3.【解答】解:∵=5,∴的平方根是±,故选:C.4.【解答】解:∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.5.【解答】解:根据题意得:a﹣2=0,b﹣5=0,c﹣3=0,解得a=,b=5,c=,则a+b﹣c=2+5﹣=5﹣.故选:A.6.【解答】解:A、是2的平方根,正确;B、﹣1的立方根是﹣1,故本选项错误;C、1的平方根是±1,故本选项错误;D、﹣3的立方根是﹣,故本选项错误;故选:A.7.【解答】解:由题中所给的程序可知:把﹣512取立方根,结果为﹣8,因为﹣8是有理数,所以再取立方根为﹣2,﹣2是有理数,所以再取立方根为=,因为是无理数,所以输出,故选:A.8.【解答】解:∵1,∴x=1,y=﹣1,∴x﹣y=×1﹣(﹣1)=1,故选:A.9.【解答】解:由题意b<0,c>a>0,|c|>|b|>|a|,则①ab+ac>0,故原结论正确;②﹣a﹣b+c>0,故原结论错误;③++=1﹣1+1=1,故原结论错误;④|a﹣b|+|c+b|﹣|a﹣c|=a﹣b+c+b﹣(﹣a+c)=2a,故原结论错误;⑤当b≤x≤a时,|x﹣b|+|x﹣a|的最小值为a﹣b,故原结论正确.故正确结论有2个.故选:B.10.【解答】解:原式=1+(2×)2016×2=1+2=3.故选:D.二.填空题11.【解答】解:若一个数的一个平方根是,则它的另一个平方根是.故答案为:.12.【解答】解:∵≈4.494,∴≈44.9(精确到0.1),故答案为:44.9.13.【解答】解:∵≈1.2639,∴==×=﹣×≈﹣0.12639.故答案为:﹣0.12639.14.【解答】解:根据题意得:x=﹣5或5,y=﹣5,当x=﹣5时,x+y=﹣5﹣5=﹣10;当x=5时,x+y=5﹣5=0.故答案为:﹣10或0.15.【解答】解:①因为>2,所以|2﹣|=﹣2;故答案为:﹣2;②×===2;故答案为:2;③因为﹣3<﹣、<4,所以﹣和之间的所有整数:﹣2,﹣1,0,1,2,3.故答案为:2,﹣1,0,1,2,3.16.【解答】解:2=,4=,∵28<32,∴<,∴2<4.故答案为:<.17.【解答】解:∵,则实数x=,故答案为:.18.【解答】解;∵四边形OABC是长方形,∴∠AOC=90°,∴AC===,∵以A为圆心,AC长为半径画弧交数轴于P点,∴AP=AC=,∴OP=AP﹣OA=﹣2,∴点P表示的数是2﹣,故答案为:2﹣.19.【解答】解:由题意得:5﹣x≥0,解得:x≤5,故答案为:x≤5.20.【解答】解:∵a≥﹣1,∴a+1≥0,则原式==|a+1|=a+1,故答案为:a+1.三.解答题
21.【解答】解(1)∵0.×100=17.∴0.×100﹣0.=17.﹣0.0.×(100﹣1)=17,0.=,(2)∵0.3×10=3.①0.3×1000=313.•②∴由②﹣①得0.3×1000﹣0.3×10=313.﹣3.,0.3(1000﹣10)=310,0.3=.22.【解答】解:(1)∵x﹣2=±,∴x﹣2=2,或x﹣2=﹣2.∴x1=4,x2=0.(2)∵(3x﹣1)2﹣25=0∴(3x﹣1)2=25,∴3x﹣1=±,∴3x﹣1=5,或3x﹣1=﹣5.∴x1=2,x2=﹣.故答案为:﹣2,0.23.【解答】解:根据题意,得2a﹣1=17,3a+b﹣1=62,解得a=9,b=10,所以,a+4b=9+4×10=9+40=49,∵(±7)2=49,∴a+4b的平方根是±7.24.【解答】解:(1)由题意得,a﹣4=1,b﹣12=8,所以a=5,b=20;(2)由(1)得,a+b=25,所以.25.【解答】解:(1)4x2﹣16=0,4x2=16,x2=4,x=±2;(2)3(x+1)3=24,(x+1)3=8,x+1=2,x=1.26.【解答】解:(1)从数轴可知:b<﹣1<c<0<a<1,所以a﹣1<0,b+1<0,c+1>0,故答案为:<,<,>;(2)由(1)可知:a﹣1<0,b+1<0,c+1>0,所以﹣|a﹣1|+|b+1|+|c+1|=a﹣1﹣b﹣1+c+1=a﹣b+c﹣1.27.【解答】解:(1)2﹣2+=2×3﹣2×+=6﹣+=6;(2)×﹣=﹣=6﹣7=﹣1;(3)=3+4﹣4﹣=7﹣4﹣1=6﹣4;(4)(π﹣3)0+(﹣)﹣1+|﹣|+=1﹣3+2﹣2=﹣4+2.28.【解答】解:(1)原式=﹣11.5﹣4.5+(10﹣10)=﹣16+0=16;(2)(﹣6)2×(﹣)﹣23=36×﹣36×﹣8=12﹣18﹣8=﹣14;(3)(﹣270)×+0.25×21.5+(﹣8)×(﹣0.25)=×(﹣270+21.5+8)=×(﹣240)=﹣60;(4)﹣+6÷(﹣)×=﹣6﹣9×(﹣2)=﹣6+18=12.29.【解答】解:(1)折叠纸面,使表示的点1与﹣1重合,折叠点对应的数为=0,设﹣2表示的点所对应点表示的数为x,于是有=0,解得x=2,故答案为2;(2)折叠纸面,使表示的点﹣1与3重合,折叠点对应的数为=1,①设5表示的点所对应点表示的数为y,于是有=1,解得y=﹣3,②设表示的点所对应点表示的数为z,于是有=1,解得z=2﹣,③设点A所表示的数为a,点B表示的数为b,由题意得:=1且b﹣a=9,解得:a=﹣3.5,b=5.5,故答案为:﹣3,2﹣,﹣3.5,5.5;3)①A往左移4个单位:(a﹣4)+a=0.解得:a=2.②A往右移4个单位:(a+4)+a=0,解得:a=﹣2.答:a的值为2或﹣2.30.【解答】解:(1)∵(m+n)2=m2+6n2+2mn,a+b=(m+n)2,
∴a=m2+3n2,b=2mn.故答案为m2+3n2,2mn;(2)∵(m+n)2=m2+3n2+2mn,a+4=(m+n)2,∴a=m2+3n2,mn=2,∵m、n均为正整数,∴m=1、n=2或m=2,n=1,∴a=13或7;(3)===2+1,则====﹣1.
相关文档
- 沪科版(2012)初中数学八年级下册 172022-04-025页
- 沪科版(2012)初中数学八年级下册17配2022-04-024页
- 人教版初中数学九年级下册课件26.22022-04-0227页
- 【中考数学复习,PPT课件】初中数学2022-04-0125页
- 华师版初中数学全册知识点2022-04-0130页
- 沪科版(2012)初中数学七年级下册 7不2022-04-015页
- 湘教版(2012)初中数学八年级下册 2平2022-04-013页
- 人教版初中数学九年级下册课件28.12022-04-0125页
- 沪科版(2012)初中数学八年级下册 17.2022-04-016页
- 【中考数学复习,PPT课件】初中数学2022-04-0111页