- 377.15 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年江苏省苏州市中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.
1.(3分)5的相反数是( )
A.15 B.-15 C.5 D.﹣5
2.(3分)有一组数据:2,2,4,5,7,这组数据的中位数为( )
A.2 B.4 C.5 D.7
3.(3分)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为( )
A.0.26×108 B.2.6×108 C.26×106 D.2.6×107
4.(3分)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于( )
A.126° B.134° C.136° D.144°
5.(3分)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
6.(3分)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为( )
A.15x=24x+3 B.15x=24x-3 C.15x+3=24x D.15x-3=24x
7.(3分)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为( )
A.x<0 B.x>0 C.x<1 D.x>1
8.(3分)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为183m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是( )
A.55.5m B.54m C.19.5m D.18m
9.(3分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )
A.6 B.8 C.10 D.12
10.(3分)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D
作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为( )
A.42 B.4 C.25 D.8
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.
11.(3分)计算:a2•a3= .
12.(3分)因式分解:x2﹣xy= .
13.(3分)若x-6在实数范围内有意义,则x的取值范围为 .
14.(3分)若a+2b=8,3a+4b=18,则a+b的值为 .
15.(3分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 cm(结果保留根号).
16.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 .
17.(3分)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 .
18.(3分)如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为2cm,则图中阴影部分的面积为 cm2(结果保留根号).
三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.
19.(5分)计算:(3)2+|﹣2|﹣(π﹣2)0
20.(5分)解不等式组:x+1<52(x+4)>3x+7
21.(6分)先化简,再求值:x-3x2+6x+9÷(1-6x+3),其中,x=2-3.
22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 ;
(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).
23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m= ,n= ;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.
(1)求证:EF=BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.
25.(8分)如图,A为反比例函数y=kx(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=210.
(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=kx(其中x>0)的图象于点C,连接OC交AB于点D,求ADDB的值.
26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.
(1)求证:DO∥AC;
(2)求证:DE•DA=DC2;
(3)若tan∠CAD=12,求sin∠CDA的值.
27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=25cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.
(1)直接写出动点M的运动速度为 cm/s,BC的长度为 cm;
(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1
(cm2),S2(cm2)
①求动点N运动速度v(cm/s)的取值范围;
②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由
.
28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.
(1)求a的值;
(2)求△ABC外接圆圆心的坐标;
(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.
2019年江苏省苏州市中考数学试卷
参考答案与试题解析
一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.
1.(3分)5的相反数是( )
A.15 B.-15 C.5 D.﹣5
【解答】解:5的相反数是﹣5.
故选:D.
2.(3分)有一组数据:2,2,4,5,7,这组数据的中位数为( )
A.2 B.4 C.5 D.7
【解答】解:这组数据排列顺序为:2,2,4,5,7,
∴这组数据的中位数为4,
故选:B.
3.(3分)苏州是全国重点旅游城市,2018年实现旅游总收入约为26000000万元,数据26000000用科学记数法可表示为( )
A.0.26×108 B.2.6×108 C.26×106 D.2.6×107
【解答】解:将26000000用科学记数法表示为:2.6×107.
故选:D.
4.(3分)如图,已知直线a∥b,直线c与直线a,b分别交于点A,B.若∠1=54°,则∠2等于( )
A.126° B.134° C.136° D.144°
【解答】解:如图所示:
∵a∥b,∠1=54°,
∴∠1=∠3=54°,
∴∠2=180°﹣54°=126°.
故选:A.
5.(3分)如图,AB为⊙O的切线,切点为A连接AO、BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为( )
A.54° B.36° C.32° D.27°
【解答】解:∵AB为⊙O的切线,
∴∠OAB=90°,
∵∠ABO=36°,
∴∠AOB=90°﹣∠ABO=54°,
∵OA=OD,
∴∠ADC=∠OAD,
∵∠AOB=∠ADC+∠OAD,
∴∠ADC=12∠AOB=27°;
故选:D.
6.(3分)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可列出的方程为( )
A.15x=24x+3 B.15x=24x-3 C.15x+3=24x D.15x-3=24x
【解答】解:设软面笔记本每本售价为x元,
根据题意可列出的方程为:15x=24x+3.
故选:A.
7.(3分)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解为( )
A.x<0 B.x>0 C.x<1 D.x>1
【解答】解:如图所示:不等式kx+b>1的解为:x>1.
故选:D.
8.(3分)如图,小亮为了测量校园里教学楼AB的高度,将测角仪CD竖直放置在与教学楼水平距离为183m的地面上,若测角仪的高度是1.5m.测得教学楼的顶部A处的仰角为30°.则教学楼的高度是( )
A.55.5m B.54m C.19.5m D.18m
【解答】解:过D作DE⊥AB,
∵在D处测得旗杆顶端A的仰角为30°,
∴∠ADE=30°,
∵BC=DE=183m,
∴AE=DE•tan30°=18m,
∴AB=AE+BE=AE+CD=18+1.5=19.5m,
故选:C.
9.(3分)如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )
A.6 B.8 C.10 D.12
【解答】解:∵四边形ABCD是菱形,
∴AC⊥BD,AO=OC=12AC=2,OB=OD=12BD=8,
∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,
∴O'C=OA=2,O'B'=OB=8,∠CO'B'=90°,
∴AO'=AC+O'C=6,
∴AB'=O'B'2+AO'2=82+62=10;
故选:C.
10.(3分)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为( )
A.42 B.4 C.25 D.8
【解答】解:∵AB⊥AD,AD⊥DE,
∴∠BAD=∠ADE=90°,
∴DE∥AB,
∴∠CED=∠CAB,
∵∠C=∠C,
∴△CED∽△CAB,
∵DE=1,AB=2,即DE:AB=1:2,
∴S△DEC:S△ACB=1:4,
∴S四边形ABDE:S△ACB=3:4,
∵S四边形ABDE=S△ABD+S△ADE=12×2×2+12×2×1=2+1=3,
∴S△ACB=4,
故选:B.
二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上.
11.(3分)计算:a2•a3= a5 .
【解答】解:a2•a3=a2+3=a5.
故答案为:a5.
12.(3分)因式分解:x2﹣xy= x(x﹣y) .
【解答】解:x2﹣xy=x(x﹣y).
故答案为:x(x﹣y).
13.(3分)若x-6在实数范围内有意义,则x的取值范围为 x≥6 .
【解答】解:若x-6在实数范围内有意义,
则x﹣6≥0,
解得:x≥6.
故答案为:x≥6.
14.(3分)若a+2b=8,3a+4b=18,则a+b的值为 5 .
【解答】解:∵a+2b=8,3a+4b=18,
则a=8﹣2b,
代入3a+4b=18,
解得:b=3,
则a=2,
故a+b=5.
故答案为:5.
15.(3分)“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.图①是由边长为10cm的正方形薄板分为7块制作成的“七巧板”,图②是用该“七巧板”拼成的一个“家”的图形.该“七巧板”中7块图形之一的正方形边长为 522 cm(结果保留根号).
【解答】解:10×10=100(cm2)
1008=522(cm)
答:该“七巧板”中7块图形之一的正方形边长为522cm.
故答案为:522.
16.(3分)如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为 827 .
【解答】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,
故取得的小正方体恰有三个面涂有红色的概率为:827.
故答案为:827.
17.(3分)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 5 .
【解答】解:连接OP,如图所示.
∵OA=OB,∠AOB=90°,
∴∠OAB=45°.
∵PC⊥OA,
∴△ACD为等腰直角三角形,
∴AC=CD=1.
设该扇形的半径长为r,则OC=r﹣1,
在Rt△POC中,∠PCO=90°,PC=PD+CD=3,
∴OP2=OC2+PC2,即r2=(r﹣1)2+9,
解得:r=5.
故答案为:5.
18.(3分)如图,一块含有45°角的直角三角板,外框的一条直角边长为8cm,三角板的外框线和与其平行的内框线之间的距离均为2cm,则图中阴影部分的面积为 (10+122) cm2(结果保留根号).
【解答】解:如图,
EF=DG=CH=2,
∵含有45°角的直角三角板,
∴BC=2,GH=2,
∴FG=8-2-2-2=6﹣22,
∴图中阴影部分的面积为:
8×8÷2﹣(6﹣22)×(6﹣22)÷2
=32﹣22+122
=10+122(cm2)
答:图中阴影部分的面积为(10+122)cm2.
故答案为:(10+122).
三、解答题;本大题共10小题,共76分.把解答过程写答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签宇笔.
19.(5分)计算:(3)2+|﹣2|﹣(π﹣2)0
【解答】解:原式=3+2﹣1
=4.
20.(5分)解不等式组:x+1<52(x+4)>3x+7
【解答】解:解不等式x+1<5,得:x<4,
解不等式2(x+4)>3x+7,得:x<1,
则不等式组的解集为x<1.
21.(6分)先化简,再求值:x-3x2+6x+9÷(1-6x+3),其中,x=2-3.
【解答】解:原式=x-3(x+3)2÷(x+3x+3-6x+3)
=x-3(x+3)2÷x-3x+3
=x-3(x+3)2•x+3x-3
=1x+3,
当x=2-3时,
原式=12-3+3=12=22.
22.(6分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是 12 ;
(2)先从盒了中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).
【解答】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为24=12,
故答案为:12.
(2)根据题意列表得:
1
2
3
4
1
3
4
5
2
3
5
6
3
4
5
7
4
5
6
7
由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,
所以抽取的2张卡片标有数字之和大于4的概率为812=23.
23.(8分)某校计划组织学生参加“书法”、“摄影”、“航模、“围棋”四个课外兴趣小组,要求每人必须参加,并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出),请你根据给出的信息解答下列问题:
(1)求参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);
(2)m= 36 ,n= 16 ;
(3)若该校共有1200名学生,试估计该校选择“围棋”课外兴趣小组的学生有多少人?
【解答】解:(1)参加这次问卷调查的学生人数为30÷20%=150(人),
航模的人数为150﹣(30+54+24)=42(人),
补全图形如下:
(2)m%=54150×100%=36%,n%=24150×100%=16%,
即m=36、n=16,
故答案为:36、16;
(3)估计该校选择“围棋”课外兴趣小组的学生有1200×16%=192(人).
24.(8分)如图,△ABC中,点E在BC边上,AE=AB,将线段AC绕A点旋转到AF的位置,使得∠CAF=∠BAE,连接EF,EF与AC交于点G.
(1)求证:EF=BC;
(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度数.
【解答】(1)证明:∵∠CAF=∠BAE,
∴∠BAC=∠EAF.
∵将线段AC绕A点旋转到AF的位置,
∴AC=AF.
在△ABC与△AEF中,
AB=AE∠BAC=∠EAFAC=AF,
∴△ABC≌△AEF(SAS),
∴EF=BC;
(2)解:∵AB=AE,∠ABC=65°,
∴∠BAE=180°﹣65°×2=50°,
∴∠FAG=∠BAE=50°.
∵△ABC≌△AEF,
∴∠F=∠C=28°,
∴∠FGC=∠FAG+∠F=50°+28°=78°.
25.(8分)如图,A为反比例函数y=kx(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA,AB,且OA=AB=210.
(1)求k的值;
(2)过点B作BC⊥OB,交反比例函数y=kx(其中x>0)的图象于点C,连接OC交AB于点D,求ADDB的值.
【解答】解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.
∵OA=AB,AH⊥OB,
∴OH=BH=12OB=2,
∴AH=OA2-OH2=6,
∴点A的坐标为(2,6).
∵A为反比例函数y=kx图象上的一点,
∴k=2×6=12.
(2)∵BC⊥x轴,OB=4,点C在反比例函数y=12x上,
∴BC=kOB=3.
∵AH∥BC,OH=BH,
∴MH=12BC=32,
∴AM=AH﹣MH=92.
∵AM∥BC,
∴△ADM∽△BDC,
∴ADDB=AMBC=32.
26.(10分)如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点E、F.
(1)求证:DO∥AC;
(2)求证:DE•DA=DC2;
(3)若tan∠CAD=12,求sin∠CDA的值.
【解答】解:(1)∵点D是BC中点,OD是圆的半径,
∴OD⊥BC,
∵AB是圆的直径,
∴∠ACB=90°,
∴AC∥OD;
(2)∵CD=BD,
∴∠CAD=∠DCB,
∴△DCE∽△DCA,
∴CD2=DE•DA;
(3)∵tan∠CAD=12,
∴△DCE和△DAC的相似比为:12,
设:DE=a,则CD=2a,AD=4a,AE=3a,
∴AEDE=3,
即△AEC和△DEF的相似比为3,
设:EF=k,则CE=3k,BC=8k,
tan∠CAD=12,
∴AC=6k,AB=10k,
∴sin∠CDA=35.
27.(10分)已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=25cm.如图①,动点M从点A出发,在矩形边上沿着A→B→C的方向匀速运动(不包含点C).设动点M的运动时间为t(s),△APM的面积为S(cm2),S与t的函数关系如图②所示.
(1)直接写出动点M的运动速度为 2 cm/s,BC的长度为 10 cm;
(2)如图③,动点M重新从点A出发,在矩形边上按原来的速度和方向匀速运动,同时,另一个动点N从点D出发,在矩形边上沿着D→C→B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M,N经过时间x(s)在线段BC上相遇(不包含点C),动点M,N相遇后立即同时停止运动,记此时△APM与△DPN的面积分别为S1(cm2),S2(cm2)
①求动点N运动速度v(cm/s)的取值范围;
②试探究S1•S2是否存在最大值,若存在,求出S1•S2的最大值并确定运动时间x的值;若不存在,请说明理由
.
【解答】解:(1)∵t=2.5s时,函数图象发生改变,
∴t=2.5s时,M运动到点B处,
∴动点M的运动速度为:52.5=2cm/s,
∵t=7.5s时,S=0,
∴t=7.5s时,M运动到点C处,
∴BC=(7.5﹣2.5)×2=10(cm),
故答案为:2,10;
(2)①∵两动点M,N在线段BC上相遇(不包含点C),
∴当在点C相遇时,v=57.5=23(cm/s),
当在点B相遇时,v=5+102.5=6(cm/s),
∴动点N运动速度v(cm/s)的取值范围为23cm/s<v≤6cm/s;
②过P作EF⊥AB于F,交CD于E,如图3所示:
则EF∥BC,EF=BC=10,
∴AFAB=APAC,
∵AC=AB2+BC2=55,
∴AF5=2555,
解得:AF=2,
∴DE=AF=2,CE=BF=3,PF=AP2-AF2=4,
∴EP=EF﹣PF=6,
∴S1=S△APM=S△APF+S梯形PFBM﹣S△ABM=12×4×2+12(4+2x﹣5)×3-12×5×(2x﹣5)=﹣2x+15,
S2=S△DPM=S△DEP+S梯形EPMC﹣S△DCM=12×2×6+12(6+15﹣2x)×3-12×5×(15﹣2x)=2x,
∴S1•S2=(﹣2x+15)×2x=﹣4x2+30x=﹣4(x-154)2+2254,
∵2.5<154<7.5,在BC边上可取,
∴当x=154时,S1•S2的最大值为2254.
28.(10分)如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.
(1)求a的值;
(2)求△ABC外接圆圆心的坐标;
(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠PAQ=∠AQB,求点Q的坐标.
【解答】解:(1)
∵y=﹣x2+(a+1)x﹣a
令y=0,即﹣x2+(a+1)x﹣a=0
解得x1=a,x2=1
由图象知:a<0
∴A(a,0),B(1,0)
∵s△ABC=6
∴12(1-a)(-a)=6
解得:a=﹣3,(a=4舍去)
(2)设直线AC:y=kx+b,
由A(﹣3,0),C(0,3),
可得﹣3k+b=0,且b=3
∴k=1
即直线AC:y=x+3,
A、C的中点D坐标为(-32,32)
∴线段AC的垂直平分线解析式为:y=﹣x,
线段AB的垂直平分线为x=﹣1
代入y=﹣x,
解得:y=1
∴△ABC外接圆圆心的坐标(﹣1,1)
(3)
作PM⊥x轴,则
s△BAP=12AB⋅PM=12×4×d
∵s△PQB=S△PAB
∴A、Q到PB的距离相等,∴AQ∥PB
设直线PB解析式为:y=x+b
∵直线经过点B(1,0)
所以:直线PB的解析式为y=x﹣1
联立y=-x2-2x+3y=x-1
解得:x=-4y=-5
∴点P坐标为(﹣4,﹣5)
又∵∠PAQ=∠AQB
可得:△PBQ≌△ABP(AAS)
∴PQ=AB=4
设Q(m,m+3)
由PQ=4得:
(m+4)2+(m+3+5)2=42
解得:m=﹣4,m=﹣8(舍去)
∴Q坐标为(﹣4,﹣1)
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2019/6/30 10:01:06;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521
相关文档
- 2018年江苏省泰州市中考数学试卷含2021-11-068页
- 2019年江苏省扬州市中考数学试卷含2021-11-0613页
- 2018年湖北省宜昌市中考数学试卷含2021-11-0619页
- 新疆乌鲁木齐市中考数学试卷含答案2021-11-0629页
- 2019年四川省达州市中考数学试卷含2021-11-0632页
- 威海市中考数学试卷含答案解析2021-11-0620页
- 江苏省扬州市中考数学试卷含答案解2021-11-0634页
- 四川省达州市中考数学试卷含答案解2021-11-0636页
- 2018年四川省凉山州中考数学试卷含2021-11-0616页
- 2018年四川省绵阳市中考数学试卷含2021-11-0624页