- 795.50 KB
- 2021-11-06 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2019年江苏省泰州市中考数学试卷及答案
(考试时间120分钟,满分150分)
请注意:1.本试卷选择题和非选择题两个部分,
2.所有试题的答案均填写在答题卡上,答案写在试卷上无效,
3.作图必须用2B铅笔,并请加黑加粗。
第一部分 选择题(共18分)
一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)
1.﹣1的相反数是( )
A.±1 B.﹣1 C.0 D.1
【答案】D.
【解析】
【分析】
根据相反数的意义,直接可得结论.
【详解】解:﹣1的相反数是1.
故选:D.
【点睛】本题考查了相反数的意义.理解a的相反数是-a,是解决本题的关键.
2.下列图形中的轴对称图形是( )
【答案】B.
【解析】
根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合。因此:
A、不是轴对称图形,不符合题意;
B、是轴对称图形,符合题意;
C、不是轴对称图形,不符合题意;
D、不是轴对称图形,不符合题意。
故选B.
【点睛】本题考查了轴对称的定义.理解轴对称的定义,是解决本题的关键.
3.方程2x2+6x-1=0的两根为x1、x2,则x1+x2等于( )
A.-6 B.6 C.-3 D. 3
【答案】C.
【解析】
试题分析:∵一元二次方程2x2+6x-1=0的两个实根分别为x1,x2,由两根之和可得;
∴x1+x2=﹣=3,
故答案为:C.
【点睛】本题考查了一元二次方程根与系数的关系.熟记公式是解决本题的关键.
4.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如下表( )
抛掷次数
100
200
300
400
500
正面朝上的频数
53
98
156
202
244
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近
A.200 B.300 C.500 D.800
【答案】C.
【解析】
试题分析:抛掷质地均匀的硬币可能出现的情况为:正,反.
∴随着次数的增多,频数越接近于一半。
故答案为:C.
【点睛】本题考查了频数的定义,了解频数的意义是解决本题的关键.
A
B
C
E
D
F
G
·
·
·
·
第5题图
5.如图所示的网格由边长相同的小正方形组成,点A、B、C、D、E、F、G在小正方形的顶点上,则△ABC的重心是( )
A.点D B.点E
C.点F D.点G
【答案】A.
【解析】
试题分析:三角形三条中线的条点叫重心,重心到对边中点的距离是它到顶点距离的一半。
∴由网格点可知点D是三角形的重心.
故答案为:A.
【点睛】本题考查了重心的定义,掌握重心的性质是解决本题的关键.
6.若2a-3b=-1,则代数式4a2-6ab+3b的值为( )
A.-1 B.1 C.2 D.3
【答案】B.
【解析】
试题分析:首先对前面两项提取公因式2a,然后把2a-3b=-1代入即可求解.
详解:原式=2 a(2a-3b)+3b=2 a×(-1)+ 3b=-(2 a-3b)= -(-1) =1.
故答案为:B.
【点睛】本题主要考查的是因式分解的方法,属于基础题型,掌握代数式的变换是解决本题的关键.
第二部分 非选择题(共132分)
二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)
7.计算:(π-1)0= .
【答案】 1.
【解析】
试题分析:∵(a)0=1,(a≠0) ∴(π-1)0=1.
故答案为:1
【点睛】本题主要考查的是零次幂的定义,掌握公式的意义是解决本题的关键.
8.若分式有意义,则x的取值范围是 .
【答案】x≠.
【解析】
试题分析:求分式中的x取值范围,就是求分式有意义的条件,根据分式分母不为0的条件,要使在实数范围内有意义,必须2x-1≠0, ∴x≠.
【点睛】本题主要考查分式有意义的条件,,掌握分式有意义,分母不为0这一条件,是解决本题的关键.[来源:学,科,网]
9.2019年5月28日,我国“科学”号远洋科考船在最深约为11000m的马里亚纳海沟南侧发现了
近10片珊瑚林,将11000用科学记数法表示为 .
【答案】1.1×104.
【解析】
试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数. ∴ 11000=1.1×104,
故答案为:1.1×104.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10.不等式组的解集为 .
【答案】x<-3.
【解析】
试题分析:由不等式组的解集可知,“同小取小”,从而得出结果.
故答案为:x<-3.
【点睛】本题考查求不等式组解集的性质,熟练得出不等式组的解集是解题关键.
11.八边形的内角和为 .
【答案】1080.[来源:Zxxk.Com]
【解析】
试题分析:本题考查了三角形的内角和公式,代入公式(n-2)×1800,即可求得.
∴(8-2)×1800=1080.
故答案为:1080.
【点睛】本题考查了三角形的内角和公式,掌握公式熟练运算是解题关键.
12.命题“三角形的三个内角中至少有两个锐角”是 (填“真命题”或“假命题”).
【答案】真命题.
【解析】
试题分析:因为三角形的内角和为1800这一定值,若只有一个内角是锐角,则另外两角必为直角或钝角,从而三角形的内角和超过1800,所以不可能只有一个是锐角,即三个内角中至少有两个锐角就真命题.
故答案为:真命题.[来源:学科网ZXXK]
【点睛】本题考查了三角形三个内角之间的关系,及内角和为1800这一定值.从而利用反证法,即可得出结论.
13.根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为 万元.
【答案】5000.
【解析】
一季度
35%
四季度
25%
三季度
20%
二季度
第13题图
试题分析:用1减去其他季度所占的百分比即可得到二季度所占的百分比,再用1000除以它所占的百分比,即可求得商场全年的营业额.
试题解析:扇形统计图中二季度所占的百分比=1﹣35%﹣25%﹣20%=20%,
所以1000÷20%=5000.
故答案为:5000.
【点睛】本题考查扇形统计图,能够从图形中得到有用信息是解题关键.
14.若关于x的方程x2+2x+m=0有两个不相等的实数根,则m的取值范围是 .
【答案】m<1
【解析】
试题分析:根据一元二次方程有两个不相等的实数根可以得到有关m的不等式,解得即可,但要注意二次项系数不为零.
【详解】∵关于x的方程x2+2x+m=0有两个不相等的实数根,
∴△=4﹣4m>0
解得:m<1,
∴m的取值范围是m<1.
故答案为:m<1.
【点睛】本题考查了根的判别式,当△>0时,方程有两个不相等的实数根;当△=0时方程有两个相等的实数根;当△<0时,方程无实数根.
15.如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为 cm.
第15题图
【答案】12π.
【解析】
试题分析:运用扇形弧长公式l=进行代入计算.[来源:学科网]
【详解】∵l===4π, ∴4π×3=12π.
故答案为:12π.
【点睛】本题考查了扇形弧长公式,掌握公式熟练运算是解题关键.
A
C
B
P
O
•
第16题图
16.如图,⊙O的半径为5,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交于⊙O点B、C.设PB=x,PC=y,则y与x的函数表达式为 .
【答案】y=.
N
【解析】
试题分析:如图,连接PO并延长交⊙O于点N,再连接BN,
证明△PBN∽△PAC,由相似三角形对应边成比例可得出y与x的函数表达式.
【详解】如图,连接PO并延长交⊙O于点N,连接BN,
∵PN是直径,∴∠PBN=90°.
∵AP⊥BC,
∴∠PAC =90°,
∴∠PBN=∠PAC,
又∵∠PNB=∠PCA,
∴△PBN∽△PAC,
∴=,
∴=
∴y=.
故答案为:y=.
【点睛】本题考查圆周角定理、相似三角形的判定和性质.本题的关键是辅助的构造及根据圆周角定理证明△PBN∽△PAC.
三、解答题(本大题共10小题,满分102分,请在答题卡指
定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
17.(本题满分12分)(1)计算:(-)×; (2)解方程:+3=.
【答案】(1)3 ; (2) x =4.
【解析】
试题分析
(1)根据算术平方根性质去括号直接计算即可;
(2)观察可得最简公分母是(x-2),方程两边同乘最简公分母,可以把分式方程转化为整式方程求解.
【详解】:(1)(-)×
=×-×
=4-
=3 .
(2) +3=
2x-5+3(x-2)= 3x-3
2x-5+3x-6= 3x-3
2x=8
x=4
经检验x=4是原方程的解.
【点睛】(1)考查了解二次根式的运算;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;另外解分式方程一定注意要验根.
18.(本题满分8分)
PM2.5是指空气中直径小于或等于2.5PM的颗粒物,它对人体健康和大气环境造成不良影响.下表是根据(全国城市空气质量报告)中的部分数据制作的统计表,根据统计表回答下列问题:
2017年、2018年7~12月全国338个地区及以上城市平均浓度统计表:[来源:Z§xx§k.Com]
(单位:pm/m2)
月份
年份
7
8
9
10
11
12
2017年
27
24
30
38
51
65
2018年
23
24
25
36
49
53
(1)2018年7~12月PM2.5平均浓度的中位数为 pm/m2;
(2)“扇形统计图”和“折线统计图”中,更能直观地反映2018年7~12月PM2.5平均浓度变化过程和趋势的统计图是 ;
(3)某同学观察统计表后说:“2018年7~12月与2017年同期相比,空气质量有所改善”。请你用一句话说明该同学得出这个结论的理由。
【答案】(1)36; (2)折线统计图;;(3)理由是:由表观察2018年7~12月与2017年同期相比,2018年PM2.5平均浓度有所下降,从而可知这些城市空气质量得到了很好的改善.
19.(本题满分8分)
小明代表学校参加“我和我的祖国”主题宣传教育活动,该活动分为两个阶段,第一阶段有“歌曲演唱”、“ 书法展示”、“器乐独奏”3个项目(依次用A、B、C表示),第二阶段有“故事演讲”、“诗歌朗诵”2个项目(依次用D、E表示),参加人员在每个阶段各随机抽取一个项目完成.用画树状图或列表的方法列出小明参加项目的所有等可能的结果,并求小明恰好抽中B、D两个项目的概率.
【答案】.
【解析】
A
B
C
D
D
D
E
E
E
开始
第一阶段
第二阶段
试题分析:画出树状图,然后根据概率公式求解;
详解:树状图如下:
由树状图可知,所有等可能的结果有6种,恰好抽中B、D两个项目只有1种;
C
A
B
第20题图
∴P(恰好抽中B、D两个项目的)=;
【点睛】本题考查树状图或列表法求概率的方法.
20.(本题满分8分)如图, △ABC中,∠C=900, AC=4, BC=8,
(1)用直尺和圆规作AB的垂直平分线;(保留作图痕迹,不要求写作法)
(2)若(1)中所作的垂直平分线交BC于点D,求BD的长.
C
A
B
第20题图
D
【答案】(1)详见解析;(2) BD=5.
【解析】
试题分析
(1)略;
(2)由垂直平分线可得AD=BD,设所求线段BD长为x,则CD=(8−x),在直角三角形ACD中运用勾股定理可求得.
【详解】解:(1)略;
(2)由作图可知 AD=BD,设BD= x,
∵∠C=900, AC=4, BC=8, 则CD=(8−x),
∴由勾股定理可得:AC2+CD2=AD2;
∴42+x2=(8−x)2;
解得:x=5.
∴BD=5.
【点睛】本题考查了线段的垂直平分的性质、勾股定理的运用等知识;熟练掌握垂直平分线性质及运用勾股定理是解题的关键.
α
A
B
C
D
E
F
第21题图
21.(本题满分10分)某体育看台侧面的示意图如图所示,观众区AC的坡度i=1∶2,顶端C离水平地面AB的高度为10m,从顶棚的D处看E处的仰角α=18030′
,竖直的立杆上C、D两点间的距离为4m,E处到观众区底端A处的水平距离AF为3m,求:
(1)观众区的水平宽度AB;
(2)顶棚的E处离地面的高度EF.
(sin18030′≈0.32, tan18030′≈0.33,结果精确到0.1m)
【答案】(1)AB=20m;
(2)EF=21.6m.
试题分析:(1)由在Rt△ABC中,AC的坡度i=1∶2,BC=10m,即可求得答案;
(2)首先过点D作DG⊥EF于点G,然后在Rt△DEG中,求得EG,继而求得答案.
试题解析:(1)在Rt△ABCE中,
∵AC的坡度i=1∶2,BC=10m,
,
α
A
B
C
D
E
F
G
第21题图
∴AB=20m;
答:观众区的水平宽度AB为20m.
(2) 如图过点D作DG⊥EF于点G,
∵AF=3m,
∴FB=23m;
∴DG=23m;
在Rt△DEG中,
∵tanα=,α=18030′,
∴tan18030′= ,
∴ EG=DG×tan18030′
≈23×0.33
=7.59
≈7.6m,
∴EF=7.6+10+4=21.6m.
答:顶棚的E处离地面的高度EF为21.6m.
考点:解直角三角形的应用及仰角问题.
22.(本题满分10分)
y
x
A
O
C
B
如图,在平面直角坐标系xoy 中,二次函数图像的顶点坐标为(4,-3),该图像与x轴相交于点A、B,与y轴相交于点C,其中点A 的横坐标为1.
(1)求该二次函数的表达式;
(2)求tan∠ABC.
第22题图
【答案】(1)y=;
(2)tan∠ABC=.
试题分析:(1)由顶点坐标(4,-3),可设二次函数的表达式为y=a(x-4) 2-3;再由点A的横坐标为1.可求得二次函数的表达式;
(2)由(1)求得点C、点B的坐标,从而得出OC、OB的长,从而可求得tan∠ABC.
试题解析:(1)∵顶点坐标为(4,-3)
∴可设二次函数的表达式为y=a(x-4) 2-3;
又∵点A的横坐标为1,纵坐标为0,
∴ 0=a(1-4) 2-3,
∴ a=,
∴y= (x-4) 2-3,
即y=.
(2)由(1)可得当 x=0时,y=,
当y=0时, (x-4) 2-3=0,
求得x1=1,x2=7,
∴点C的坐标为(0,),点B的坐标为(7,0).
∴OC=,OB=7,
∴tan∠ABC==.
【点睛】考查用待定系数法求抛物线的解析式,二次函数的性质,三角函数的应用.解题的关键是求出线段
OC,OB的长.
23.(本题满分10分)
3
第23题图
5
X(kg)
y(元/kg)
100
300
A
B
小李经营一家水果店,某日到水果批发市场批发一种水果.经了解,一次性批发这种水果不得少于100kg,超过300kg时,所有这种水果的批发单价均为3元/kg.图中折线表示批发单价y(元/kg)与质量x(kg)的函数关系.
(1)求图中线段AB所在直线的函数表达式;
(2)小李用800元一次可以批发这种水果的质量是多少?
【答案】(1)y=﹣0.01x+6 (100≤x≤300). (2)200kg.
【解析】
试题分析:(1)根据题意,由单价是5元/ kg,可卖出100 kg;单价是3元/ kg,可卖出300 kg,
可得单价y(元/kg)与质量x(kg)的函数关系;
(2)根据题意当单价y与质量x的关系可得方程。
【详解】(1)依题意:设线段AB所在直线的函数表达式为:y=kx+b,
将点A( 100,5 ) ,B(300,3)代入得:
;解得:.
∴y=﹣0.01x+6 (100≤x≤300).
答:线段AB所在直线的函数表达式为y=﹣0.01x+6 (100≤x≤300).
(2)依题意有:(﹣0.01x+6)·x=800,
求得:x1=200,x2=400(舍),
答:小李用800元一次可以批发这种水果的质量200 kg.
【点睛】此题主要考查了一次函数的应用以及一元二次方程的应用等知识,正确利用单价×总量=总价得出方程是解题关键.
24.(本题满分10分)
E
D
C
B
A
O
如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为弧AC的中点,过点D作DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为5,AB=8,求CE的长.
【答案】(1);(2)CE=.
【解析】
【分析】
(1)首先判断DE与⊙O相切,连接OD可证得DE垂直OD;
(2)根据相似三角形的判定和性质即可得到结论.
【详解】(1) DE为⊙O的切线,
理由:连接OD,
∵AC为⊙O的直径,D为弧AC的中点,
∴弧AD=弧CD,
∴∠AOD=∠COD=90°,
又∵DE∥AC,
∴∠EDO=∠AOD=90°,
∴DE为⊙O的切线.
(2)解:∵DE∥AC,
∴∠EDO=∠ACD,
∵∠ACD=∠ABD,
∵∠DCE=∠BAD,
∴△DCE∽△BAD,
∴
∵半径为5,∴AC=10,
∵ D为弧AC的中点,
∴AD=CD=5
∴
∴CE=
【点睛】
本题考查了切线的判定,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
25.(本题满分12分)
P
G
F
D
C
B
A
E
第25题图
如图,线段AB=8,射线BG⊥AB,P为射线BG上一点,以AP为边作正方形APCD ,且点C、D与点B在AP 两侧,在线段DP上取一点E,使∠EAP=∠BAP.直线CE与线段AB相交于点F(点F与点A、B不重合).
(1)求证:△AEP≌△CEP;
(2)判断CF与AB的位置关系,并说明理由;
(3)求△AEF的周长.
【答案】(1) ①证明见解析,(2) CF⊥AB;
(3) △AEF的周长为16.
【解析】
P
G
F
D
C
B
A
E
第25题图
(1)证明:∵四边形APCD正方形,
N
∴DP平分∠APC, PC=PA,
∴∠APD=∠CPD=45°,
∴△AEP≌△CEP.
(2) CF⊥AB.
理由如下: ∵△AEP≌△CEP,
M
∴∠EAP=∠ECP,
∵∠EAP=∠BAP.
∴∠BAP=∠FCP,
∵∠FCP+∠CMP=90°,∠AMF=∠CMP,
∴∠AMF+∠PAB=90°,
∴∠AFM=90°,
∴CF⊥AB.
(3)过点 C 作CN⊥PB.可证得△PCN≌△APB,
∴ CN=PB=BF, PN=AB,
∵△AEP≌△CEP, ∴AE=CE,
∴AE+EF+AF
=CE+EF+AF
=BN+AF
=PN+PB+AF
=AB+CN+AF
=AB+BF+AF
=2 AB
=16.
【点睛】
本题考查了正方形性质、全等三角形的相关应用解题的关键.
26.(本题满分14分)
已知一次函数y1=kx+n(n <0)和反比例函数y2=(m>0, x>0),
(1)如图1,若n=-2,且函数y1、y2的图像都经过点A(3,4).
①求m、k的值;
②直接写出当y1>y2时x的范围;
(2)如图2,过点P(1,0)作y轴的平行线l与函数y2的图像相交于点B,与反比例函数y3= (x>0)的图像相交于点C.
①若k=2, 直线l与函数y1的图像相交于点D,当点B、C、D中的一点到另外两点的距离相等时,
求m-n的值;
②过点B作x轴的平行线与函数y1的图像相交与点E,当m-n
的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值,求此时k的值及定值d.
A
Y1
O
x
y
Y2
C
Y1
O
x
y
Y2
P
B
Y3
图1
图2
第26题图
【答案】(1)①m=12;k=2. ②x>3; (2)①m﹣n=1 或 m﹣n=4;②k=1,d=1.
【分析】
(1)①把点A(3,4)的坐标代入y2=,即可求出的y2函数表达式;从而得出m的值;再由n=-2,和点A(3,4)的坐标代入y1=kx+n可求得k.
②由函数图像的性质可直接得出x的范围;
(2)①由题意可设点D、点B、点C的坐标,再由题意得出方程.
②由题意可得出d关于k、m的关系式,从而可求得结论.
【详解】(1)①∵y2= , 过点A(3,4).
∴4=
∴m=12.
又∵点A (3,4)y1=kx+n的图象上,且n=-2,
∴4=3k-2,
∴k=2.
②由图像可知当x>3时,y1>y2.
(2)①∵直线l过点P(1,0),
∴D(1,2+ n),B(1,m),C(1, n),
又∵点B、C、D中的一点到另外两点的距离相等,
∴BD=BC, 或 BD=DC;
∴2+ n﹣m=m﹣n; 或 m﹣(2+ n)=2+ n﹣n;
∴m﹣n=1 或 m﹣n=4.
②由题意可知,B(1,m),C(1, n),
当y1=m时,kx+n=m,
∴x=
即点E为(,0)
∴d=BC+BE
=
=
∵m-n的值取不大于1的任意实数时, d始终是一个定值,
∴=0
∴k=1,从而d=1.
【点睛】
考查待定系数法求一次函数解析式,反比例次函数式,综合性比较强,注意分类讨论思想在解题中的应用.
相关文档
- 深圳市锦华实验学校2019--2020学年2021-11-0611页
- 2020年四川省南充市中考试卷2021-11-0623页
- 2014年呼和浩特市中考试卷2021-11-017页
- 人教版八年级数学上学期期中考试卷2021-11-017页
- 湘教版地理八年级下册期中考试卷2021-10-273页
- 泉州市感德片区地理八年级期中考试2021-10-276页
- 人教版七上历史期中考试卷(无答案)2021-10-252页
- 人教2016—2017 学年度七年级地理2021-10-254页
- 苏教版七年级数学第一学期期中考试2021-10-254页
- 福建省2018中考试卷历史试题(word版2021-10-228页