- 367.00 KB
- 2021-11-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年广东省广州市中考数学试卷
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)
1.(3分)四个数0,1,,中,无理数的是( )
A. B.1 C. D.0
2.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )
A.1条 B.3条 C.5条 D.无数条
3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )
A. B. C. D.
4.(3分)下列计算正确的是( )
A.(a+b)2=a2+b2 B.a2+2a2=3a4 C.x2y÷=x2(y≠0) D.(﹣2x2)3=﹣8x6
5.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4
6.(3分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )
A. B. C. D.
7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )
A.40° B.50° C.70° D.80°
8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A. B.
C. D.
9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是( )
A. B.
C. D.
10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2 B.m2 C.m2 D.1009m2
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.(3分)已知二次函数y=x2,当x>0时,y随x的增大而 (填“增大”或“减小”).
12.(3分)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .
13.(3分)方程=的解是 .
14.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 .
15.(3分)如图,数轴上点A表示的数为a,化简:a+= .
16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有 .(填写所有正确结论的序号)
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)
17.(9分)解不等式组:.
18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.
19.(10分)已知T=+.
(1)化简T;
(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.
20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.
(1)求y1关于x的函数解析式,并画出这个函数的图象;
(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为2.
①求k的值;
②结合图象,当y1>y2时,写出x的取值范围.
23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).
(1)证明:该抛物线与x轴总有两个不同的交点;
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.
①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.
25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.
2018年广东省广州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)
1.(3分)四个数0,1,,中,无理数的是( )
A. B.1 C. D.0
【分析】分别根据无理数、有理数的定义即可判定选择项.
【解答】解:0,1,是有理数,
是无理数,
故选:A.
2.(3分)如图所示的五角星是轴对称图形,它的对称轴共有( )
A.1条 B.3条 C.5条 D.无数条
【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.
【解答】解:五角星的对称轴共有5条,
故选:C.
3.(3分)如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )
A. B. C. D.
【分析】根据从正面看得到的图形是主视图,可得答案.
【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,
故选:B.
4.(3分)下列计算正确的是( )
A.(a+b)2=a2+b2 B.a2+2a2=3a4 C.x2y÷=x2(y≠0) D.(﹣2x2)3=﹣8x6
【分析】根据相关的运算法则即可求出答案.
【解答】解:(A)原式=a2+2ab+b2,故A错误;
(B)原式=3a2,故B错误;
(C)原式=x2y2,故C错误;
故选:D.
5.(3分)如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4
【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.
根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角进行分析即可.
【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,
故选:B.
6.(3分)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )
A. B. C. D.
【分析】直接根据题意画出树状图,再利用概率公式求出答案.
【解答】解:如图所示:
,
一共有4种可能,取出的两个小球上都写有数字2的有1种情况,
故取出的两个小球上都写有数字2的概率是:.
故选:C.
7.(3分)如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )
A.40° B.50° C.70° D.80°
【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.
【解答】解:∵∠ABC=20°,
∴∠AOC=40°,
∵AB是⊙O的弦,OC⊥AB,
∴∠AOC=∠BOC=40°,
∴∠AOB=80°,
故选:D.
8.(3分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A. B.
C. D.
【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.
【解答】解:设每枚黄金重x两,每枚白银重y两,由题意得:
,
故选:D.
9.(3分)一次函数y=ax+b和反比例函数y=在同一直角坐标系中的大致图象是( )
A. B.
C. D.
【分析】先由一次函数的图象确定a、b的正负,再根据a﹣b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.
【解答】解:图A、B直线y=ax+b经过第一、二、三象限,
∴a>0、b>0,
∵y=0时,x=﹣,即直线y=ax+b与x轴的交点为(﹣,0)
由图A、B的直线和x轴的交点知:﹣>﹣1,
即b<a,
所以b﹣a<0
∴a﹣b>0,
此时双曲线在第一、三象限.
故选项B不成立,选项A正确.
图C、D直线y=ax+b经过第二、一、四象限,
∴a<0,b>0,
此时a﹣b<0,双曲线位于第二、四象限,
故选项C、D均不成立;
故选:A.
10.(3分)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2 B.m2 C.m2 D.1009m2
【分析】由OA4n=2n知OA2018=+1=1009,据此得出A2A2018=1009﹣1=1008,据此利用三角形的面积公式计算可得.
【解答】解:由题意知OA4n=2n,
∵2018÷4=504…2,
∴OA2018=+1=1009,
∴A2A2018=1009﹣1=1008,
则△OA2A2018的面积是×1×1008=504m2,
故选:A.
二、填空题(本大题共6小题,每小题3分,满分18分.)
11.(3分)已知二次函数y=x2,当x>0时,y随x的增大而 增大 (填“增大”或“减小”).
【分析】根据二次函数的二次项系数a以及对称轴即可判断出函数的增减性.
【解答】解:∵二次函数y=x2,开口向上,对称轴为y轴,
∴当x>0时,y随x的增大而增大.
故答案为:增大.
12.(3分)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC= .
【分析】根据直角三角形的性质解答即可.
【解答】解:∵旗杆高AB=8m,旗杆影子长BC=16m,
∴tanC=,
故答案为:
13.(3分)方程=的解是 x=2 .
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:去分母得:x+6=4x,
解得:x=2,
经检验x=2是分式方程的解,
故答案为:x=2
14.(3分)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 (﹣5,4) .
【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.
【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
∴AB=5,
∴AD=5,
∴由勾股定理知:OD===4,
∴点C的坐标是:(﹣5,4).
故答案为:(﹣5,4).
15.(3分)如图,数轴上点A表示的数为a,化简:a+= 2 .
【分析】直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【解答】解:由数轴可得:
0<a<2,
则a+
=a+
=a+(2﹣a)
=2.
故答案为:2.
16.(3分)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四边形AFOE:S△COD=2:3.
其中正确的结论有 ①②④ .(填写所有正确结论的序号)
【分析】根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可;
【解答】解:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴===,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴==,
∴==,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=3a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:3.故④正确,
故答案为①②④.
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)
17.(9分)解不等式组:.
【分析】根据不等式组的解集的表示方法:大小小大中间找,可得答案.
【解答】解:,
解不等式①,得x>﹣1,
解不等式②,得x<2,
不等式①,不等式②的解集在数轴上表示,如图
,
原不等式组的解集为﹣1<x<2.
18.(9分)如图,AB与CD相交于点E,AE=CE,DE=BE.求证:∠A=∠C.
【分析】根据AE=EC,DE=BE,∠AED和∠CEB是对顶角,利用SAS证明△ADE≌△CBE即可.
【解答】证明:在△AED和△CEB中,
,
∴△AED≌△CEB(SAS),
∴∠A=∠C(全等三角形对应角相等).
19.(10分)已知T=+.
(1)化简T;
(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.
【分析】(1)原式通分并利用同分母分式的加法法则计算即可求出值;
(2)由正方形的面积求出边长a的值,代入计算即可求出T的值.
【解答】解:(1)T=+==;
(2)由正方形的面积为9,得到a=3,
则T=.
20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 16 ,众数是 17 ;
(2)计算这10位居民一周内使用共享单车的平均次数;
(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;
(2)根据平均数的概念,将所有数的和除以10即可;
(3)用样本平均数估算总体的平均数.
【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,
故答案是16,17;
(2)=14,
答:这10位居民一周内使用共享单车的平均次数是14次;
(3)200×14=2800
答:该小区居民一周内使用共享单车的总次数为2800次.
21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;
(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.
【解答】解:设购买A型号笔记本电脑x台时的费用为w元,
(1)当x=8时,
方案一:w=90%a×8=7.2a,
方案二:w=5a+(8﹣5)a×80%=7.4a,
∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;
(2)∵若该公司采用方案二购买更合算,
∴x>5,
方案一:w=90%ax=0.9ax,
方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,
则0.9ax>a+0.8ax,
x>10,
∴x的取值范围是x>10.
22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.
(1)求y1关于x的函数解析式,并画出这个函数的图象;
(2)若反比例函数y2=的图象与函数y1
的图象相交于点A,且点A的纵坐标为2.
①求k的值;
②结合图象,当y1>y2时,写出x的取值范围.
【分析】(1)写出函数解析式,画出图象即可;
(2)①分两种情形考虑,求出点A坐标,利用待定系数法即可解决问题;
②利用图象法分两种情形即可解决问题;
【解答】解:(1)由题意y1=|x|.
函数图象如图所示:
(2)①当点A在第一象限时,由题意A(2,2),
∴2=,
∴k=4.
同法当点A在第二象限时,k=﹣4,
②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.
当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.
23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.
(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);
(2)在(1)的条件下,
①证明:AE⊥DE;
②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.
【分析】(1)利用尺规作出∠ADC的角平分线即可;
(2)①延长DE交AB的延长线于F.只要证明AD=AF,DE=EF,利用等腰三角形三线合一的性质即可解决问题;
②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.由MB=MK,推出MB+MN=KM+MN,根据垂线段最短可知:当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长;
【解答】解:(1)如图,∠ADC的平分线DE如图所示.
(2)①延长DE交AB的延长线于F.
∵CD∥AF,
∴∠CDE=∠F,∵∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∵AD=AB+CD=AB+BF,
∴CD=BF,
∵∠DEC=∠BEF,
∴△DEC≌△FEB,
∴DE=EF,
∵AD=AF,
∴AE⊥DE.
②作点B关于AE的对称点K,连接EK,作KH⊥AB于H,DG⊥AB于G.连接MK.
∵AD=AF,DE=EF,
∴AE平分∠DAF,则△AEK≌△AEB,
∴AK=AB=4,
在Rt△ADG中,DG==4,
∵KH∥DG,
∴=,
∴=,
∴KH=,
∵MB=MK,
∴MB+MN=KM+MN,
∴当K、M、N共线,且与KH重合时,KM+MN的值最小,最小值为KH的长,
∴BM+MN的最小值为.
24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).
(1)证明:该抛物线与x轴总有两个不同的交点;
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.
①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.
【分析】(1)令y=0,再求出判别式,判断即可得出结论;
(2)先求出OA=2,OB=m+2,OC=2(m+2),
①判断出∠OCB=∠OAF,求出tan∠OCB=,即可求出OF=1,即可得出结论;
②先设出BD=n,再判断出∠DCE=90°,得出DE是⊙P的直径,进而求出BE=2n,DE=n,即可得出结论.
【解答】解:(1)令y=0,
∴x2+mx﹣2m﹣4=0,
∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,
∵m>0,
∴△>0,
∴该抛物线与x轴总有两个不同的交点;
(2)
令y=0,
∴x2+mx﹣2m﹣4=0,
∴(x﹣2)[x+(m+2)]=0,
∴x=2或x=﹣(m+2),
∴A(2,0),B(﹣(m+2),0),
∴OA=2,OB=m+2,
令x=0,
∴y=﹣2(m+2),
∴C(0,﹣2(m+2)),
∴OC=2(m+2),
①通过定点(0,1)理由:如图,
∵点A,B,C在⊙P上,
∴∠OCB=∠OAF,
在Rt△BOC中,tan∠OCB===,
在Rt△AOF中,tan∠OAF===,
∴OF=1,
∴点F的坐标为(0,1);
②如图1,由①知,点F(0,1),
∵D(0,1),
∴点D在⊙P上,
∵点E是点C关于抛物线的对称轴的对称点,
∴∠DCE=90°,
∴DE是⊙P的直径,
∴∠DBE=90°,
∵∠BED=∠OCB,
∴tan∠BED=,
设BD=n,
在Rt△BDE中,tan∠BED===,
∴BE=2n,
根据勾股定理得,DE==n,
∴l=BD+BE+DE=(3+)n,r=DE=n,
∴==.
25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.
【分析】(1)利用四边形内角和定理计算即可;
(2)连接BD.以BD为边向下作等边三角形△BDQ.想办法证明△DCQ是直角三角形即可解决问题;
(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.想办法证明∠BEC=150°即可解决问题;
【解答】解:(1)如图1中,
在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠C=30°,
∴∠A+∠C=360°﹣60°﹣30°=270°.
(2)如图2中,结论:DB2=DA2+DC2.
理由:连接BD.以BD为边向下作等边三角形△BDQ.
∵∠ABC=∠DBQ=60°,
∴∠ABD=∠CBQ,
∵AB=BC,DB=BQ,
∴△ABD≌△CBQ,
∴AD=CQ,∠A=∠BCQ,
∵∠A+∠BCD=∠BCQ+∠BCD=270°,
∴∠DCQ=90°,
∴DQ2=DC2+CQ2,
∵CQ=DA,DQ=DB,
∴DB2=DA2+DC2.
(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.
则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB,
∴RE2=RB2+EB2,
∴∠EBR=90°,
∴∠RAE+∠RBE=150°,
∴∠ARB+∠AEB=∠AEC+∠AEB=210°,
∴∠BEC=150°,
∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,
∵∠K+∠BEC=180°,
∴∠K=30°,∠BOC=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴点E的运动路径==.
相关文档
- 2020年广西玉林市中考数学试卷【含2021-11-109页
- 2019年湖南省张家界市中考数学试卷2021-11-0725页
- 2020年甘肃省武威市中考数学试卷2021-11-0721页
- 2019年黑龙江省伊春市中考数学试卷2021-11-0733页
- 2013年云南普洱中考数学试卷及答案2021-11-079页
- 2020年全国中考数学试卷分类汇编(2021-11-0716页
- 2010年辽宁省铁岭市中考数学试卷2021-11-0721页
- 2019年山东省东营市中考数学试卷2021-11-0731页
- 2019年广西百色市中考数学试卷2021-11-0723页
- 2019年西藏中考数学试卷2021-11-0724页