- 397.50 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3章 数据的集中趋势和离散程度
[测试范围:3.1~3.3 时间:40分钟 分值:100分]
一、选择题(每小题4分,共32分)
1.一组数据1,3,4,2,2的众数是( )
A.1 B.2 C.3 D.4
2.一组数据7,8,10,12,13的平均数是( )
A.7 B.9 C.10 D.12
3.一组数据3,3,5,6,7,8的中位数是( )
A.3 B.5 C.5.5 D.6
4.一次数学检测中,有5名学生的成绩(单位:分)分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是( )
A.87.2分,89分 B.89分,89分
C.87.2分,78分 D.90分,93分
5.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:
得分(分)
60
70
80
90
100
人数
7
12
10
8
3
则得分的众数和中位数分别是( )
A.70分,70分 B.80分,80分
C.70分,80分 D.80分,70分
6.如图4-G-1是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( )
图4-G-1
A.16小时,10.5小时
B.8小时,9小时
C.16小时,8.5小时
D.8小时,8.5小时
7.某公司欲招聘一名公关人员,对甲、乙、丙、丁四名候选人进行了面试和笔试,他们的成绩如下表所示:
候选人
甲
乙
丙
丁
测试成绩
(百分制)
面试
86
92
90
83
笔试
90
83
83
92
如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( )
6
A.甲 B.乙 C.丙 D.丁
8.数据x1,x2,x3,x4,x5的平均数是x,则数据x1+3,x2+3.5,x3+2.5,x4+2,x5+4的平均数为( )
A.x+2 B.x+2.5
C.x+3 D.x+3.5
二、填空题(每小题4分,共24分)
9.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分.
10.如图4-G-2是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的平均数是________.
图4-G-2
11.某班学生综合实践作物栽培操作能力评估成绩的统计结果如下表:
成绩/分
3
4
5
6
7
8
9
10
人数
1
1
2
2
8
9
15
12
则这组成绩的众数为________.
12. 某校在进行“阳光体育活动”中,统计了7名原来偏胖的学生的情况,他们的体重分别降低的千克数为5,9,3,10,6,8,5,则这组数据的中位数是________.
13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.
14.某校抽样调查了七年级学生每天的体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________组.
组别
时间(时)
频数
第1组
0≤t<0.5
12
第2组
0.5≤t<1
24
第3组
1≤t<1.5
18
第4组
1.5≤t<2
10
第5组
2≤t<2.5
6
三、解答题(共44分)
15.(8分)已知一组数据:3,a,4,5,b,c,6.
(1)若这组数据是按由小到大的顺序排列的,则中位数是________;
(2)若该组数据的平均数是12,求a+b+c的值.
6
16.(10分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:
每人销售量(台)
20
17
13
8
5
4
人数
1
1
2
5
3
2
(1)这14名营销人员该月销售冰箱的平均数、众数和中位数分别是多少?
(2)你认为销售部经理给这14名营销人员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.
17.(12分)九(3)班A,B,C三名同学的知识测试、实践能力、成长记录三项成绩(单位:分)如下表所示.
测试项目
测试成绩
A
B
C
知识测试
90
88
90
实践能力
82
84
87
成长记录
95
95
90
(1)如果根据三项测试的平均成绩评价他们的综合成绩,那么谁的成绩最好?
(2)如果把他们的知识测试、实践能力、成长记录三项成绩按5∶3∶2的比例计入综合成绩,那么谁的成绩最好?
18.(14分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图4-G-3中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为0.5小时的人数,并补全条形统计图;
(3)求表示户外活动时间为2小时的扇形圆心角的度数;
6
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?
图4-G-3
6
详解详析
1.B 2.C
3.C [解析] 这组数据已经从小到大排列了,中间的两个数是5和6,故中位数是(5+6)÷2=5.5.
4.A
5.C [解析] 全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小顺序排列后知,第20个与第21个得分都是80分,故中位数是80分.
6.B [解析] 众数是一组数据中出现次数最多的数,所以该班40名同学一周参加体育锻炼时间的众数是8小时;将这组数据按从小到大的顺序排列后,第20个和第21个数都是9,故该班40名同学一周参加体育锻炼时间的中位数是9小时.
7.B [解析] 因为甲的平均成绩为86×0.6+90×0.4=51.6+36=87.6(分);乙的平均成绩为92×0.6+83×0.4=55.2+33.2=88.4(分);丙的平均成绩为90×0.6+83×0.4=54+33.2=87.2(分);丁的平均成绩为83×0.6+92×0.4=49.8+36.8=86.6(分).所以乙的平均成绩最高.故选B.
8. C
9.8.0 [解析] 根据题意,得(8.2+8.3+7.8+7.7+8.0)÷5=8.0(分).
10.4 ℃
11.9分
12.6
13.2
14. 2 [解析] 中位数应是第35个和第36个数的平均数,第35个数和第36个数都在第2组.
15.解:(1)5
(2)由题意可知(3+a+4+5+b+c+6)=12,所以a+b+c=66.
16.解:(1)平均数为
=9(台),
8台出现了5次,出现的次数最多,所以众数为8台,
14个数据按从小到大的顺序排列后,第7个,第8个数都是8,所以中位数是(8+8)÷2=8(台).
(2)每月销售冰箱的定额为8台才比较合适.因为8台既是众数,又是中位数,是大部分人能够完成的台数.若定为9台,则只有少量人才能完成,打击了大部分职工的积极性.
17.解:(1)xA=(90+82+95)=89(分);
xB=(88+84+95)=89(分);
xC=(90+87+90)=89(分).
可见,三名同学的成绩一样.
(2)xA=90×50%+82×30%+95×20%=88.6(分);
xB=88×50%+84×30%+95×20%=88.2(分);
xC=90×50%+87×30%+90×20%=89.1(分).
6
可见,C同学的成绩最好.
18.解:(1)共调查了32÷40%=80(名)学生.
(2)户外活动时间为0.5小时的人数为80×20%=16(名).
补全条形统计图如下.
(3)表示户外活动时间为2小时的扇形圆心角的度数为×360°=54°.
(4)本次调查中学生参加户外活动的平均时间为
=1.175(时).
∵1.175>1,∴平均活动时间符合要求.
户外活动时间的众数和中位数均为1小时.
6