- 306.49 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年山东省临沂市中考数学试卷
一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)在实数﹣3,﹣1,0,1中,最小的数是( )
A.﹣3 B.﹣1 C.0 D.1
2.(3分)自2013年10月习近平总书记提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅2017年我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为( )
A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人
3.(3分)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是( )
A.42° B.64° C.74° D.106°
4.(3分)一元二次方程y2﹣y﹣=0配方后可化为( )
A.(y+)2=1 B.(y﹣)2=1 C.(y+)2= D.(y﹣)2=
5.(3分)不等式组的正整数解的个数是( )
A.5 B.4 C.3 D.2
6.(3分)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是( )
A.9.3m B.10.5m C.12.4m D.14m
20
7.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是( )
A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm2
8.(3分)2018年某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )
A. B. C. D.
9.(3分)如表是某公司员工月收入的资料.
月收入/元
45000
18000
10000
5500
5000
3400
3300
1000
人数
1
1
1
3
6
1
11
1
能够反映该公司全体员工月收入水平的统计量是( )
A.平均数和众数 B.平均数和中位数
C.中位数和众数 D.平均数和方差
10.(3分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )
A.= B.=
C.= D.=
11.(3分)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥
20
CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是( )
A. B.2 C.2 D.
12.(3分)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是( )
A.x<﹣1或x>1 B.﹣1<x<0或x>1
C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l
13.(3分)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:
①若AC=BD,则四边形EFGH为矩形;
②若AC⊥BD,则四边形EFGH为菱形;
③若四边形EFGH是平行四边形,则AC与BD互相平分;
④若四边形EFGH是正方形,则AC与BD互相垂直且相等.
其中正确的个数是( )
20
A.1 B.2 C.3 D.4
14.(3分)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )
A.原数与对应新数的差不可能等于零
B.原数与对应新数的差,随着原数的增大而增大
C.当原数与对应新数的差等于21时,原数等于30
D.当原数取50时,原数与对应新数的差最大
二、填空题(本大题共5小题,每小题3分,共15分)
15.(3分)计算:|1﹣|= .
16.(3分)已知m+n=mn,则(m﹣1)(n﹣1)= .
17.(3分)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD= .
18.(3分)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是 cm.
19.(3分)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是 .
三、解答题(本大题共7小题,共63分)
20
20.(7分)计算:(﹣).
21.(7分)某地某月1~20日中午12时的气温(单位:℃)如下:
22 31 25 15 18 23 21 20 27 17
20 12 18 21 21 16 20 24 26 19
(1)将下列频数分布表补充完整:
气温分组
划记
频数
12≤x<17
3
17≤x<22
22≤x<27
27≤x<32
2
(2)补全频数分布直方图;
(3)根据频数分布表或频数分布直方图,分析数据的分布情况.
22.(7分)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?
23.(9分)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.
(1)求证:AC是⊙O的切线;
(2)若BD=,BE=1.求阴影部分的面积.
20
24.(9分)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.
根据图中信息,求:
(1)点Q的坐标,并说明它的实际意义;
(2)甲、乙两人的速度.
25.(11分)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.
(1)如图,当点E在BD上时.求证:FD=CD;
(2)当α为何值时,GC=GB?画出图形,并说明理由.
26.(13分)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
20
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
20
2018年山东省临沂市中考数学试卷
参考答案与试题解析
一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.
【解答】解:∵﹣3<﹣1<0<1,
∴最小的是﹣3.
故选:A.
2.
【解答】解:1100万=1.1×107,
故选:B.
3.
【解答】解:∵AB∥CD,
∴∠ABC=∠C=64°,
在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,
故选:C.
4.
【解答】解:y2﹣y﹣=0
y2﹣y=
y2﹣y+=1
(y﹣)2=1
故选:B.
20
5.
【解答】解:解不等式1﹣2x<3,得:x>﹣1,
解不等式≤2,得:x≤3,
则不等式组的解集为﹣1<x≤3,
所以不等式组的正整数解有1、2、3这3个,
故选:C.
6.
【解答】解:∵EB∥CD,
∴△ABE∽△ACD,
∴=,即=,
∴CD=10.5(米).
故选:B.
7.
【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.
所以该几何体的侧面积为2π×1×3=6π(cm2).
故选:C.
8.
【解答】解:如图所示:
,
一共有9种可能,符合题意的有1种,
故小华和小强都抽到物理学科的概率是:.
故选:D.
20
9.
【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,
所以众数能够反映该公司全体员工月收入水平;
因为公司共有员工1+1+1+3+6+1+11+1=25人,
所以该公司员工月收入的中位数为5000元;
由于在25名员工中在此数据及以上的有12人,
所以中位数也能够反映该公司全体员工月收入水平;
故选:C.
10.
【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,
根据题意,得:=,
故选:A.
11.
【解答】解:∵BE⊥CE,AD⊥CE,
∴∠E=∠ADC=90°,
∴∠EBC+∠BCE=90°.
∵∠BCE+∠ACD=90°,
∴∠EBC=∠DCA.
在△CEB和△ADC中,
,
∴△CEB≌△ADC(AAS),
∴BE=DC=1,CE=AD=3.
∴DE=EC﹣CD=3﹣1=2
20
故选:B.
12.
【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.
∴B点的横坐标为:﹣1,
故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.
故选:D.
13.
【解答】解:因为一般四边形的中点四边形是平行四边形,
当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,
故④选项正确,
故选:A.
14.
【解答】解:设原数为a,则新数为,设新数与原数的差为y
则y=a﹣=﹣
易得,当a=0时,y=0,则A错误
∵﹣
∴当a=﹣时,y有最大值.
20
B错误,A正确.
当y=21时,﹣=21
解得a1=30,a2=70,则C错误.
故选:D.
二、填空题(本大题共5小题,每小题3分,共15分)
15.
【解答】解:|﹣|=﹣1.
故答案为:﹣1.
16.
【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,
∵m+n=mn,
∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,
故答案为1.
17.
【解答】解:∵四边形ABCD是平行四边形,
∴BC=AD=6,OB=D,OA=OC,
∵AC⊥BC,
∴AC==8,
∴OC=4,
∴OB==2,
∴BD=2OB=4
故答案为:4.
18.
20
【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,
∵在△ABC中,∠A=60°,BC=5cm,
∴∠BOC=120°,
作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,
∴BD=,∠OBD=30°,
∴OB=,得OB=,
∴2OB=,
即△ABC外接圆的直径是cm,
故答案为:.
19.
【解答】解:设0.=x,则36.=100x,
∴100x﹣x=36,
解得:x=.
故答案为:.
三、解答题(本大题共7小题,共63分)
20.
【解答】解:原式=[﹣]•
=•
20
=•
=.
21.
【解答】解:(1)补充表格如下:
气温分组
划记
频数
12≤x<17
3
17≤x<22
9
22≤x<27
6
27≤x<32
2
(2)补全频数分布直方图如下:
(3)由频数分布直方图知,17≤x<22时天数最多,有9天.
22.
【解答】解:
工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,
理由是:过B作BD⊥AC于D,
∵AB>BD,BC>BD,AC>AB,
20
∴求出DB长和2.1m比较即可,
设BD=xm,
∵∠A=30°,∠C=45°,
∴DC=BD=xm,AD=BD=xm,
∵AC=2(+1)m,
∴x+x=2(+1),
∴x=2,
即BD=2m<2.1m,
∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.
23.
【解答】(1)证明:连接OD,作OF⊥AC于F,如图,
∵△ABC为等腰三角形,O是底边BC的中点,
∴AO⊥BC,AO平分∠BAC,
∵AB与⊙O相切于点D,
∴OD⊥AB,
而OF⊥AC,
∴OF=OD,
∴AC是⊙O的切线;
(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,
∴r2+()2=(r+1)2,解得r=1,
∴OD=1,OB=2,
∴∠B=30°,∠BOD=60°,
∴∠AOD=30°,
在Rt△AOD中,AD=OD=,
∴阴影部分的面积=2S△AOD﹣S扇形DOF
=2××1×﹣
=﹣.
20
24.
【解答】解:(1)设PQ解析式为y=kx+b
把已知点P(0,10),(,)代入得
解得:
∴y=﹣10x+10
当y=0时,x=1
∴点Q的坐标为(1,0)
点Q的意义是:
甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.
(2)设甲的速度为akm/h,乙的速度为bkm/h
由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时
∴
∴
∴甲、乙的速度分别为6km/h、4km/h
25.
【解答】解:(1)如图,连接AF,
20
∵∠AEF=∠FDA=90°,AD=FE,AF=FA,
∴Rt△AEF≌Rt△FDA(HL),
∴DF=AE,
又∵AE=AB=CD,
∴CD=DF;
(2)如图,当GB=GC时,点G在BC的垂直平分线上,
分两种情况讨论:
①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,
∵GC=GB,
∴GH⊥BC,
∴四边形ABHM是矩形,
∴AM=BH=AD=AG,
∴GM垂直平分AD,
∴GD=GA=DA,
∴△ADG是等边三角形,
∴∠DAG=60°,
∴旋转角α=60°;
②当点G在AD左侧时,同理可得△ADG是等边三角形,
20
∴∠DAG=60°,
∴旋转角α=360°﹣60°=300°.
26.
【解答】解:(1)∵B(1,0),
∴OB=1,
∵OC=2OB=2,
∴C(﹣2,0),
Rt△ABC中,tan∠ABC=2,
∴,
∴,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),
易得AB的解析式为:y=﹣2x+2,
设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),
20
∵PE=DE,
∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),
x=1(舍)或﹣1,
∴P(﹣1,6);
②∵M在直线PD上,且P(﹣1,6),
设M(﹣1,y),
∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,
BM2=(1+1)2+y2=4+y2,
AB2=(1+2)2+62=45,
分三种情况:
i)当∠AMB=90°时,有AM2+BM2=AB2,
∴1+(y﹣6)2+4+y2=45,
解得:y=3,
∴M(﹣1,3+)或(﹣1,3﹣);
ii)当∠ABM=90°时,有AB2+BM2=AM2,
∴45+4+y2=1+(y﹣6)2,
y=﹣1,
∴M(﹣1,﹣1),
iii)当∠BAM=90°时,有AM2+AB2=BM2,
∴1+(y﹣6)2+45=4+y2,
y=,
∴M(﹣1,);
综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).
20
20
相关文档
- 2018年云南省中考数学试卷含答案2021-11-1110页
- 衡阳市中考数学试卷含答案解析2021-11-1118页
- 湖南省邵阳市中考数学试卷含答案解2021-11-1128页
- 贵州省贵阳市中考数学试卷含答案解2021-11-1132页
- 2019年湖南省长沙市中考数学试卷含2021-11-1130页
- 2018年辽宁省大连市中考数学试卷含2021-11-116页
- 黑龙江省哈尔滨市中考数学试卷含答2021-11-1129页
- 2018年广西省桂林市中考数学试卷含2021-11-116页
- 包头市中考数学试卷含答案解析2021-11-1136页
- 广东省深圳市中考数学试卷含答案解2021-11-1117页