- 496.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010中考数学分类汇编
一、选择题
1.2.3.4.5.6.7.8.9.10.
11.12.13.14.15.16.17.18.19.20.
21.22.23.24.25.26.27.28.29.30.
二、填空题
1.(2010安徽蚌埠)给你两张白纸一把剪刀。你的任务是:用剪刀剪出下面给定的两个图案,你可以将纸片任意折叠,但只能沿直线剪一刀,要得到下面两个图案,在不实际折叠的情况下,想象一下,该如何折叠?用虚线画出折痕,用实线画出剪的这一刀(分别在旁边的白纸上画出来)
图1 图2
【答案】
2.3.4.5.6.7.8.9.10.
11.12.13.14.15.16.17.18.19.20.
21.22.23.24.25.26.27.28.29.30.
三、解答题
1.(2010江苏盐城)(本题满分10分)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:
(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?
(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中
乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?
【答案】解:(1)设甲种药品的出厂价格为每盒x元,乙种药品的出厂价格为每盒y元.
则根据题意列方程组得:……………………………………(2分)
解之得: …………………………………………………………………(4分)
5×3.6-2.2=18-2.2=15.8(元) 6×3=18(元)
答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元…………(5分)
(2)设购进甲药品x箱(x为非负整数),购进乙药品(100-x)箱,则根据题意列不等式组得:
………………………………………(7分)
解之得: ……………………………………………………………(8分)
则x可取:58,59,60,此时100-x的值分别是:42,41,40
有3种方案供选择:第一种方案,甲药品购买58箱,乙药品购买42箱;
第二种方案,甲药品购买59箱,乙药品购买41箱;
第三种方案,甲药品购买60箱,乙药品购买40箱; ……(10分)
(注:(1)中不作答不扣分,(2)中在方案不写或写错扣1分)
2.(2010辽宁丹东市)某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
【答案】解:(1)设按优惠方法①购买需用元,按优惠方法②购买需用元 1分
. 3分
(2)设,即,
.当整数时,选择优惠方法②. 5分
设,∴当时,选择优惠方法①,②均可.
∴当整数时,选择优惠方法①. 7分
(3)因为需要购买4个书包和12支水性笔,而,
购买方案一:用优惠方法①购买,需元; 8分
购买方案二:采用两种购买方式,用优惠方法①购买4个书包,
需要=80元,同时获赠4支水性笔;
用优惠方法②购买8支水性笔,需要元.
共需80+36=116元.显然116<120. 9分
最佳购买方案是:
用优惠方法①购买4个书包,获赠4支水性笔;再用优惠方法②购买8支水性笔.
10分
3.(2010山东济宁)某市在道路改造过程中,需要铺设一条长为1000米的管道
,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量(以百米为单位)的方案有几种?请你帮助设计出来.
【答案】(1)解:设甲工程队每天能铺设米,则乙工程队每天能铺设()米.
根据题意得:. 2分
解得.
检验: 是原分式方程的解.
答:甲、乙工程队每天分别能铺设米和米. 4分
(2)解:设分配给甲工程队米,则分配给乙工程队()米.
由题意,得解得. 6分
所以分配方案有3种.
方案一:分配给甲工程队米,分配给乙工程队米;
方案二:分配给甲工程队米,分配给乙工程队米;
方案三:分配给甲工程队米,分配给乙工程队米. 8分
4.(2010四川眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.
(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?
(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?
(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?
【答案】
解:(1)设购买甲种鱼苗x尾,则购买乙种鱼苗尾,由题意得:
………………………………………(1分)
解这个方程,得:
∴
答:甲种鱼苗买4000尾,乙种鱼苗买2000尾. …………………(2分)
(2)由题意得: ……………………………(3分)
解这个不等式,得:
即购买甲种鱼苗应不少于2000尾. ………………………………(4分)
(3)设购买鱼苗的总费用为y,则 (5分)
由题意,有 ………………………(6分)
解得: …………………………………………………………(7分)
在中
∵,∴y随x的增大而减少
∴当时,.
即购买甲种鱼苗2400尾,乙种鱼苗3600尾时,总费用最低.………(9分)
5.(2010浙江嵊州市)为支持玉树搞震救灾,某市A、B、C三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D、E两县,根据灾区情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。
(1)求这赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为吨(为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨,则A、B两地的赈灾物资运往D、E两县的方案有几种?
(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
A地
B地
C地
运往D县的费用(元/吨)
220
200
200
运往E县的费用(元/吨)
250
220
210
为即时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
【答案】(1)180,100
(2)五种
(3)当时,总费用有最大值为60390元
6.(2010重庆市潼南县) (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.
(1)求甲、乙两工程队单独完成此项工程各需要多少天?
(2)若甲工程队独做a天后,再由甲、乙两工程队合作 天(用含a的代数式表示)可完成此项工程;
(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?
【答案】
解:(1)设乙独做x天完成此项工程,则甲独做(x+30)天完成此项工程.
由题意得:20()=1 -----------------2分
整理得:x2-10x-600=0
解得:x1=30 x2=-20 -----------------------------3分
经检验:x1=30 x2=-20都是分式方程的解,
但x2=-20不符合题意舍去---------------------------4分
x+30=60
答:甲、乙两工程队单独完成此项工程各需要60天、30天.----5分
(2)设甲独做a天后,甲、乙再合做(20-)天,可以完成
此项工程.-------------------------------------------7分
(3)由题意得:1×
解得:a≥36---------------------------------------9分 答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. ---------------------------10分
7.(2010 福建德化)(8分)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案? 并直接写出其中获利最大的购货方案.
甲
乙
进价(元/件)
15
35
售价(元/件)
20
45
【答案】解:(1)设甲种商品应购进x件,乙种商品应购进y件.
根据题意,得 解得:
答:甲种商品购进100件,乙种商品购进60件.
(2)设甲种商品购进a件,则乙种商品购进(160-a)件.
根据题意,得
解不等式组,得 65<a<68 .
∵a为非负整数,∴a取66,67.
∴ 160-a相应取94,93.
答:有两种构货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.
8.(2010湖南长沙)长沙市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.
(1)求平均每次下调的百分率;
(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
【答案】解:(1)设平均每次下调的百分率为x,根据题意,得,解得,(不合题意舍去).所以平均每次下调的百分率为0.1.
(2)方案①购房少花4050×100×0.02=8100(元),但需要交两年的物业管理费1.5×100×12×2=3600(元),实际得到的优惠是8100-3600=4500(元);方案②省两年物业管理费1.5×100×12×2=3600(元).因此方案①更优惠.
9.(2010江苏宿迁)(本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.
(1)求甲、乙两种花木每株成本分别为多少元?
(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?
【答案】(1)解:(1)设甲、乙两种花木的成本价分别为x元和y元.
由题意得:
解得:
(2)设种植甲种花木为a株,则种植乙种花木为(3a+10)株. 则有: 解得: 由于a为整数,∴a可取18或19或20, 所以有三种具体方案:
①种植甲种花木18株,种植乙种花木3a+10=64株;
②种植甲种花木19株,种植乙种花木3a+10=67株;
③种植甲种花木20株,种植乙种花木3a+10=70株.
10.某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.
(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?
(2)该超市为使甲、乙两种商品共80件的总利润(利润售价进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.
【答案】解:(1)设商品进了x件,则乙种商品进了(80-x)件,
依题意得
10x+(80-x)×30=1600
解得:x=40
即甲种商品进了40件,乙种商品进了80-40=40件.
(2)设购买甲种商品为x件,则购买乙种商品为(80-x)件,
依题意可得:
600≤(15-10)x+(40-30)(80-x)≤610
解得: 38≤x≤40
∵x为整数
∴x取38,39,40
∴80- x为42,41,40
即有三种方案,分别为甲38件,乙42件或甲39件,乙41件或甲40件,乙40件.
11.(2010福建福州)郑老师想为希望小学四年(3)班的同学购买学习用品,了解到某商店每个书包价格比每本词典多8元.用124元恰好可以买到3个书包和2本词典.
(1)每个书包和每本词典的价格各是多少元?
(2)郑老师计划用l000元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后.余下不少于lOO元且不超过120元的钱购买体育用品.共有哪几种购买书包和词典的方案?
【答案】(1)解:设每个书包的价格为x元,则每本词典的价格为(x-8)元.根据题意得:
3 x +2(x-8)=124
解得:x=28.
∴ x-8=20.
答:每个书包的价格为28元,每本词典的价格为20元.
(2)解:设昀买书包y个,则购买词典(40-y)本.根据题意得:
解得:10≤y≤12.5.
因为y取整数,所以y的值为10或11或12.
所以有三种购买方案,分别是:
①书包10个,词典30本;
②书包11个,词典29本;
③书包12个,词典28本.
12.(2010四川宜宾)小明利用课余时间回收废品,将卖得的钱去购买5本大小不同的两种笔记本,要求共花钱不超过28元,且购买的笔记本的总页数不低于340页,两种笔记本的价格和页数如下表.
为了节约资金,小明应选择哪一种购买方案?请说明理由.
大笔记本
小笔记本
价格(元/本)
6
5
页数(页/本)
100
60
【答案】解:设买大笔记x本,由题意得:
解得:1≤x≤3
又∵x为正整数,∴x=1,2,3
所以购买的放案有三种:
方案一:购买大笔记本1本,小笔记本4本;
方案二:购买大笔记本2本,小笔记本3本;
方案三:购买大笔记本3本,小笔记本2本;
花费的费用为:
方案一:6×1+5×4=26元;
方案二:6×2+5×3=27元;
方案三:6×3+5×2=28元;
所以选择方案一省钱.
13.(2010湖南衡阳)某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆。由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车。
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0250时,购买一个需3500元,故;
所以,
.
(2) 当0