中考数学压轴题专题 10页

  • 466.50 KB
  • 2021-05-10 发布

中考数学压轴题专题

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
中考数学大题复习 一、函数问题 ‎1、已知双曲线与直线相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线上的动点.过点B作BD∥y轴于点D.过N(0,-n)作NC∥x轴交双曲线于点E,交BD于点C.‎ ‎(1)若点D坐标是(-8,0),求A、B两点坐标及k的值.‎ ‎(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式.‎ ‎(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.‎ ‎2、如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. ‎ ‎(1)直接写出点A的坐标,并求出抛物线的解析式;‎ ‎ (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E ‎ ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?‎ ‎②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?‎ 请直接写出相应的t值.‎ 二、折叠问题 已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,),C(0,),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S;‎ ‎(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;‎ ‎(2)当纸片重叠部分的图形是四边形时,求t的取值范围;‎ ‎(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.‎ y B C y T A C B O x O T A x 三、圆相关问题 A y x B E F O1‎ Q O O2‎ C ‎1、如图,在平面直角坐标系内,Rt△ABC的直角顶点C(0,)在轴的正半轴上,A、B是轴上是两点,且OA∶OB=3∶1,以OA、OB为直径的圆分别交AC于点E,交BC于点F.直线EF交OC于点Q.‎ ‎(1)求过A、B、C三点的抛物线的解析式;‎ ‎(2)请猜想:直线EF与两圆有怎样的位置关系?并证明你的猜想.‎ ‎(3)在△AOC中,设点M是AC边上的一个动点,‎ 过M作MN∥AB交OC于点N.试问:在轴上是否存在点P,使得△PMN是 一个以MN为一直角边的等腰直角三角形?若存在,求出P点坐标;若不存在,‎ 请说明理由.‎ A ‎·‎ B C D E F G M x y O ‎2、已知:如图,抛物线与x轴交于A、B两点,与y轴交于C点,∠ACB=90°,‎ ‎(1)求m的值及抛物线顶点坐标;‎ ‎(2)过A、B、C的三点的⊙M交y轴于另一点D,连结DM并延长交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;‎ ‎(3)在(2)条件下,设P为上的动点(P不与C、D重合),连结PA交y轴于点H,问是否存在一个常数k,始终满足AH·AP=k,如果存在,请写出求解过程;如果不存在,请说明理由.‎ 四、动点问题 X O P D C A B Y ‎1、如图,已知点A(0,1)、C(4,3)、E(,),P是以AC为对角线的矩形ABCD内部(不在各边上)的—个动点,点D在y轴,抛物线y=ax2+bx+1以P为顶点.‎ ‎(1)说明点A、C、E在一条条直线上;‎ ‎(2)能否判断抛物线y=ax2+bx+1的开口方向?请说明理由;‎ ‎(3)设抛物线y=ax2+bx+1与x轴有交点F、G(F在G的左侧),△GAO与△FAO 的面积差为3,且这条抛物线与线段AE有两个不同的交点.这时能确定a、‎ b的值吗?若能,请求出a、b的值;若不能,请确定a、b的取值范围.‎ QA P O C(8,6)‎ B(18,6)‎ A(18,0)‎ x y ‎2、如图,在直角坐标系中,O是原点,A、B、C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P、Q同时从原点出发,分别坐匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动。‎ ‎(1)求出直线OC的解析式及经过O、A、C三点的抛物线的解析式。‎ ‎(2)试在⑴中的抛物线上找一点D,使得以O、A、D为顶点的三角形与△AOC全等,请直接写出点D的坐标。‎ ‎(3)设从出发起,运动了t秒。如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围。‎ ‎(4)设从出发起,运动了t秒。当P、Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分,如有可能,请求出t的值;如不可能,请说明理由。‎ 答案:一、函数问题:‎ ‎1、解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.‎ ‎∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2)‎ 从而k=8×2=16‎ ‎(2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上,‎ ‎∴mn=k,B(-‎2m,-),C(-‎2m,-n),E(-m,-n)‎ ‎=2mn=2k,=mn=k,=mn=k.‎ ‎∴=――=k.∴k=4.‎ 由直线及双曲线,得A(4,1),B(-4,-1)‎ ‎∴C(-4,-2),M(2,2)‎ 设直线CM的解析式是,由C、M两点在这条直线上,得 ‎,解得a=b=‎ ‎∴直线CM的解析式是y=x+.‎ ‎(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1‎ 设A点的横坐标为a,则B点的横坐标为-a.于是,‎ 同理 ‎∴p-q=-=-2‎ ‎2、(1)点A的坐标为(4,8) …………………1分 将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx ‎ 8=‎16a+4b ‎ 得 ‎ ‎ 0=‎64a+8b ‎ 解 得a=-,b=4‎ ‎∴抛物线的解析式为:y=-x2+4x …………………3分 ‎(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=‎ ‎∴PE=AP=t.PB=8-t.‎ ‎∴点E的坐标为(4+t,8-t).‎ ‎∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. ‎ ‎∴EG=-t2+8-(8-t)=-t2+t. ∵-<0,∴当t=4时,线段EG最长为2. ‎ ‎②共有三个时刻. t1=, t2=,t3= . ‎ 二、折叠问题 ‎1. (1) ∵A,B两点的坐标分别是A(10,0)和B(8,),‎ ‎ ∴, ∴‎ ‎ 当点A´在线段AB上时,∵,TA=TA´,‎ ‎ ∴△A´TA是等边三角形,且,‎ ‎ ∴,,‎ A´‎ y E ‎ ∴,‎ x O C T P B A ‎ 当A´与B重合时,AT=AB=,‎ ‎ 所以此时.‎ ‎ (2)当点A´在线段AB的延长线,且点P在线段AB(不与B重合)上时,‎ ‎ 纸片重叠部分的图形是四边形(如图(1),其中E是TA´与CB的交点),‎ y x ‎ 当点P与B重合时,AT=2AB=8,点T的坐标是(2,0)‎ ‎ 又由(1)中求得当A´与B重合时,T的坐标是(6,0)‎ ‎ 所以当纸片重叠部分的图形是四边形时,.‎ E B P A´‎ F C ‎ (3)S存在最大值 A T O ‎ 当时,,‎ ‎ 在对称轴t=10的左边,S的值随着t的增大而减小,‎ ‎∴当t=6时,S的值最大是.‎ 当时,由图,重叠部分的面积 ‎∵△A´EB的高是,‎ ‎∴‎ ‎ ‎ 当t=2时,S的值最大是;‎ 当,即当点A´和点P都在线段AB的延长线是(如图,其中E是TA´与CB的交点,F是TP与CB的交点),‎ ‎∵,四边形ETAB是等腰形,∴EF=ET=AB=4,‎ ‎∴‎ 综上所述,S的最大值是,此时t的值是.‎ 三、圆相关问题 ‎1、 (1)在Rt△ABC中,OC⊥AB,‎ B A E F O1‎ Q O O2‎ y x ‎2‎ ‎1‎ ‎3‎ ‎4‎ N M P C ‎∴△AOC≌△COB.‎ ‎∴OC2=OA·OB.‎ ‎∵OA∶OB=3∶1,C(0,),‎ ‎∴‎ ‎∴OB=1.∴OA=3.‎ ‎∴A(-3,0),B(1,0).‎ 设抛物线的解析式为 则解之,得 ‎∴经过A、B、C三点的抛物线的解析式为 ‎(2)EF与⊙O1、⊙O2都相切.‎ 证明:连结O1E、OE、OF.‎ ‎∵∠ECF=∠AEO=∠BFO=90°,‎ ‎∴四边形EOFC为矩形.‎ ‎∴QE=QO.‎ ‎∴∠1=∠2.‎ ‎∵∠3=∠4,∠2+∠4=90°,‎ ‎∴EF与⊙O1相切.‎ 同理:EF理⊙O2相切.‎ ‎(3)作MP⊥OA于P,设MN=a,由题意可得MP=MN=a. ‎ ‎∵MN∥OA,‎ ‎∴△CMN∽△CAO.‎ ‎∴‎ ‎∴‎ 解之,得 此时,四边形OPMN是正方形.‎ ‎∴‎ ‎∴‎ 考虑到四边形PMNO此时为正方形,‎ ‎∴点P在原点时仍可满足△PNN是以MN为一直角边的等腰直角三角形.‎ 故轴上存在点P使得△PMN是一个以MN为一直角边的等腰直角三角形且或 ‎2、(1)由抛物线可知,点C的坐标为(0,m),且m<0.‎ ‎  设A(x1,0),B(x2,0).则有x1·x2=‎3m  ‎ 又OC是Rt△ABC的斜边上的高,∴△AOC∽△COB ∴ ‎ ‎∴,即x1·x2=-m2 ‎ ‎∴-m2=‎3m,解得 m=0 或m=-3 ‎ 而m<0,故只能取m=-3 ‎ 这时,‎ ‎ 故抛物线的顶点坐标为(,-4)‎ ‎(2)解法一:由已知可得:M(,0),A(-,0),B(3,0),‎ C(0,-3),D(0, 3)‎ ‎∵抛物线的对称轴是x=,也是⊙M的对称轴,连结CE ‎∵DE是⊙M的直径,‎ ‎∴∠DCE=90°,∴直线x=,垂直平分CE,‎ ‎∴E点的坐标为(2,-3)‎ ‎∵,∠AOC=∠DOM=90°,‎ ‎∴∠ACO=∠MDO=30°,∴AC∥DE ‎∵AC⊥CB,∴CB⊥DE 又FG⊥DE,  ∴FG∥CB ‎ 由B(3,0)、C(0,-3)两点的坐标易求直线CB的解析式为:‎ y=-3  ‎ 可设直线FG的解析式为y=+n,把(2,-3)代入求得n=-5‎ 故直线FG的解析式为y=-5  ‎ 解法二:令y=0,解-3=0得 x1=-,x2=3‎ 即A(-,0),B(3,0)‎ 根据圆的对称性,易知::⊙M半径为2,  M(,0)‎ 在Rt△BOC中,∠BOC=90°,OB=3,,OC=3‎ ‎∴∠CBO=30°,同理,∠ODM=30°。‎ 而∠BME=∠DMO,∠DOM=90°,∴DE⊥BC ‎∵DE⊥FG, ∴BC∥FG ‎∴∠EFM=∠CBO=30°‎ 在Rt△EFM中,∠MEF=90°,ME=2,∠FEM=30°,‎ ‎∴MF=4,∴OF=OM+MF=5,‎ ‎∴F点的坐标为(5,0)‎ 在Rt△OFG中,OG=OF·tan30°=5×=5‎ A ‎·‎ B C D E F G M x y P H O ‎∴G点的坐标为(0,-5)‎ ‎∴直线 FG的解析式为y=-5 ‎ ‎(3)解法一:‎ 存在常数k=12,满足AH·AP=12  ‎ 连结CP 由垂径定理可知,‎ ‎∴∠P=∠ACH ‎(或利用∠P=∠ABC=∠ACO)‎ 又∵∠CAH=∠PAC,‎ ‎∴△ACH∽△APC ‎∴ 即AC2=AH·AP ‎ 在Rt△AOC中,AC2=AO2+OC2=()2+32=12‎ ‎(或利用AC2=AO·AB=×4=12‎ ‎∴AH·AP=12  ‎ 解法二:‎ 存在常数k=12,满足AH·AP=12‎ 设AH=x,AP=y 由相交弦定理得HD·HC=AH·HP 即 化简得:xy=12‎ 即 AH·AP=12 ‎ 四、动点问题 ‎1、(1)由题意,A(0,1)、C(4,3)确定的解析式为:y=x+1.‎ 将点E的坐标E(,)代入y=x+1中,左边=,右边=×+1=,‎ ‎∵左边=右边,∴点E在直线y=x+1上,即点A、C、E在一条直线上.‎ ‎(2)解法一:由于动点P在矩形ABCD内部,∴点P的纵坐标大于点A的纵坐标,而点A与点P都在抛物线上,且P为顶点,∴这条抛物线有最高点,抛物线的开口向下 X G F O P D E C A B Y 解法二:∵抛物线y=ax2+bx+c的顶点P的纵坐标为,且P在矩形ABCD内部,∴1<<3,由1<1—得—>0,∴a<0,∴抛物线的开口向下. ‎ ‎(3)连接GA、FA,∵S△GAO—S△FAO=3 ∴GO·AO—FO·AO=3 ∵OA=1,∴GO—FO=6. 设F(x1,0)、G(x2,0),则x1、x2为方程ax2+bx+c=0的两个根,且x1<x2,又∵a<0,∴x1·x2=<0,∴x1<0<x2,‎ ‎∴GO= x2,FO= —x1,∴x2—(—x1)=6,‎ 即x2+x1=6,∵x2+x1= — ∴—=6,‎ ‎∴b= —‎6a, ‎ ‎∴抛物线解析式为:y=ax2—6ax+1, 其顶点P的坐标为(3,1—‎9a), ∵顶点P在矩形ABCD内部, ‎ 由方程组 y=ax2—6ax+1‎ y=x+1‎ 得:ax2—(‎6a+)x=0‎ ‎∴1<1—‎9a<3, ∴—<a<0. ‎ ‎∴x=0或x==6+.‎ 当x=0时,即抛物线与线段AE交于点A,而这条抛物线与线段AE有两个不同的交 点,则有:0<6+≤,解得:—≤a<—‎ 综合得:—<a<— ∵b= —‎6a,∴<b<‎ ‎2、(1)∵O、C两点的坐标分别为O,C ‎   设OC的解析式为,将两点坐标代入得:‎ ‎   ,,∴ ‎ ‎  ∵A,O是轴上两点,故可设抛物线的解析式为 ‎   再将C代入得:∴ ‎ ‎(2)D ‎(3)当Q在OC上运动时,可设Q,依题意有:‎ ‎∴,∴Q,‎ 当Q在CB上时,Q点所走过的路程为,∵OC=10,∴CQ=‎ ‎∴Q点的横坐标为,∴Q, ‎ ‎(4)∵梯形OABC的周长为44,当Q点OC上时,P运动的路程为,则Q运动的路程为 ‎△OPQ中,OP边上的高为:‎ 梯形OABC的面积=,依题意有:‎ 整理得:  ∵△=,∴这样的不存在 当Q在BC上时,Q走过的路程为,∴CQ的长为:‎ ‎∴梯形OCQP的面积==36≠84×‎ ‎∴这样的值不存在 综上所述,不存在这样的值,使得P,Q两点同时平分梯形的周长和面积