• 379.50 KB
  • 2021-05-10 发布

北京中考解三角形分类汇编

  • 4页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎8.如图,为测量一棵与地面垂直的树BC的高度,在距离树的底端4米的A处,测得树顶B的仰角=74°,则树BC的高度为 A.米 B.米 ‎ C.米 D.米 ‎22.已知:如图,在矩形ABCD中,E是BC边上一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.‎ ‎(1) 求证:四边形FECD是正方形;‎ ‎(2) 若BE=1,ED=,求tan∠DBC的值.‎ ‎22.如图,矩形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD于点E.‎ ‎ (1)求证:∠BAM=∠AEF;‎ ‎(2)若AB=4,AD=6,,求DE的长. ‎ ‎24. 如图,甲船在港口P的南偏西方向,距港口86海里的A处,沿AP方向以每小时15海里的速度匀速驶向港口P.乙船从港口P出发,沿南偏东方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据:)‎ ‎23.如图,CD垂直平分AB于点D,连接CA,CB,将BC沿BA的方向平移,得到线段DE,交AC于点O,连接EA,EC.‎ ‎(1)求证:四边形ADCE是矩形;‎ ‎(2)若CD=1,AD=2,求sin∠COD的值.‎ ‎26.阅读材料,回答问题:‎ 图1‎ 小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果,,,,‎ ‎,那么.‎ 通过上网查阅资料,他又知“”,因此他得到“在含 ‎30°角的直角三角形中,存在着的关系.” ‎ 图2‎ 这个关系对于一般三角形还适用吗?为此他做了如下的探究:‎ ‎(1)如图2,在Rt△ABC中,,,,.‎ 请判断此时“”的关系是否成立?‎ 图3‎ ‎(2)完成上述探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:‎ 如图3,在锐角△ABC中,,,.‎ 过点C作于D.‎ ‎∵ 在Rt△ADC和Rt△BDC中,,‎ ‎∴ , .‎ ‎∴ , .‎ 图4‎ C B A ‎∴ .‎ 同理,过点A作于H,可证.‎ ‎∴ .‎ 请将上面的过程补充完整.‎ ‎(3)如图4,在△ABC中,如果,,,那么 .‎ ‎26.我们学习了锐角三角函数的相关知识,知道锐角三角函数定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长的比与角的大小之间可以相互转化.如图1,在Rt△ABC中,∠C=90°.若∠A=30°,则cosA=.‎ 类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对.如图2,在△ABC中,AB=AC,顶角A的正对记作sadA,这时,sadA=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.‎ 根据上述角的正对的定义,解答下列问题:‎ ‎(1)直接写出sad60°的值为  ;‎ ‎(2)若0°<∠A<180°,则∠A的正对值sad A的取值范围是  ;‎ ‎(3)如图2,已知tanA=,其中∠A为锐角,求sadA的值;‎ ‎(4)直接写出sad36°的值为  .‎ ‎(东城二模)25.  在学习完锐角三角函数后,老师提出一个这样的问题:如图1,在Rt△ABC中,∠ACB=90°, AB =1,∠A=,求sin2(用含sin,cos的式子表示).‎ ‎  聪明的小雯同学是这样考虑的:如图2,取AB的中点O,连接OC,过点C作CD⊥AB于点D,则∠COB= 2,然后利用锐角三角函数在Rt△ABC中表示出AC,BC,在Rt△ACD中表示出CD,则可以求出sin====.‎ 阅读以上内容,回答下列问题:‎ 在Rt△ABC中,∠C =90°,AB =1.‎ ‎(1)如图3,若BC=,则 sin=      , sin2=       ;‎ ‎(2)请你参考阅读材料中的推导思路,求出tan2的表达式(用含sin,cos的式子表示).       ‎