- 285.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
绝密★启用前 试卷类型:A
德州市二○○九年中等学校招生考试
数 学 试 题
注意事项:
1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷2页为选择题,24分;第Ⅱ卷8页为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.
2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.
3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.
第Ⅰ卷(选择题 共24分)
一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.
1.某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高
(A)-10℃ (B)-6℃ (C)6℃ (D)10℃
2.计算的结果是
(A) (B) (C) (D)
E
D
B
C′
F
C
D′
A
(第3题图)
3.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠EFB=65°,则∠AED′等于
(A) 70° (B) 65°
(C) 50° (D) 25°
4.已知点M (-2,3 )在双曲线上,则下列各点一定在该双曲线上的是
(A)(3,-2 ) (B)(-2,-3 ) (C)(2,3 ) D)(3,2)
5.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是
①正方体
②圆柱
③圆锥
④球
(第5题图)
(A)①② (B)②③ (C) ②④ (D) ③④
6.不等式组的解集在数轴上表示正确的是
(A)
-3
1
0
(B)
-1
3
0
(C)
-3
1
0
(D)
-1
3
0
7.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为
(A)10cm (B)30cm (C)45cm (D)300cm
y
x
O
B
A
(第8题图)
8.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为
(A)(0,0) (B)(,)
(C)(-,-) (D)(-,-)
绝密★启用前 试卷类型:A
德州市二○○九年中等学校招生考试
数 学 试 题
第Ⅱ卷(非选择题 共96分)
注意事项:
1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.
2.答卷前将密封线内的项目填写清楚.
题号
二
三
总分
17
18
19
20
21
22
23
得分
得 分
评 卷 人
二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.
9.据报道,全球观看北京奥运会开幕式现场直播的观众达2 300 000 000人,创下全球直播节目收视率的最高记录.该观众人数可用科学记数法表示为____________人.
10.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量较稳定的是棉农_________________.
棉农甲
68
70
72
69
71
棉农乙
69
71
71
69
70
11.若n()是关于x的方程的根,则m+n的值为____________.
12.若关于x,y的二元一次方程组的解也是二元一次方程的解,则k的值为 .
B
C
D
A
O
(第14题图)
E
(第15题图)
A
B′
C
F
B
A
B
C
D
M
N
P
P1
M1
N1
(第13题图)
13.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是__________.
14.如图,在四边形ABCD中,已知AB不平行CD,∠ABD=∠ACD
,请你添加一个条件: ,使得加上这个条件后能够推出AD∥BC且AB=CD.
15.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 .
y
x
O
C1
B2
A2
C3
B1
A3
B3
A1
C2
(第16题图)
16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别
在直线(k>0)和x轴上,
已知点B1(1,1),B2(3,2),
则Bn的坐标是______________.
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.
得 分
评 卷 人
17. (本题满分7分)
化简:.
得 分
评 卷 人
18. (本题满分9分)
某中学对全校学生60秒跳绳的次数进行了统计,全校平均次数是100次.某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如下(每个分组包括左端点,不包括右端点):
求:(1)该班60秒跳绳的平均次数至少是多少?是否超过全校平均次数?
(2)该班一个学生说:“我的跳绳成绩在我班是中位数”,请你给出该生跳绳成绩的所在范围.
(3)从该班中任选一人,其跳绳次数达到或超过校平均次数的概率是多少?
(第18题图)
60
80
100
120
140
160
180
次数
4
2
5
7
13
19
频数
O
得 分
评 卷 人
19. (本题满分9分)
A
C
D
E
B
O
(第19题图)
l
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点 E.
(1) 求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
C
A
得 分
评 卷 人
20. (本题满分9分)
为了贯彻落实国务院关于促进家电下乡的指示精神,有关部门自2007年12月底起进行了家电下乡试点,对彩电、冰箱(含冰柜)、手机三大类产品给予产品销售价格13%的财政资金直补.企业数据显示,截至2008年12月底,试点产品已销售350万台(部),销售额达50亿元,与上年同期相比,试点产品家电销售量增长了40%.
(1)求2007年同期试点产品类家电销售量为多少万台(部)?
(2)如果销售家电的平均价格为:彩电每台1500元,冰箱每台2000元,手机每部800元,已知销售的冰箱(含冰柜)数量是彩电数量的倍,求彩电、冰箱、手机三大类产品分别销售多少万台(部),并计算获得的政府补贴分别为多少万元?
得 分
评 卷 人
21. (本题满分10分)
如图,斜坡AC的坡度(坡比)为1:,AC=10米.坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆BC的高度.
A
B
C
(第21题图)
D
得 分
评 卷 人
22. (本题满分10分)
某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等边三角形,固定点E为AB的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和AB平行的伸缩横杆.
(1)当MN和AB之间的距离为0.5米时,求此时△EMN的面积;
(2)设MN与AB之间的距离为米,试将△EMN的面积S(平方米)表示成关于x的函数;
E
A
B
G
N
D
M
C
(第22题图)
(3)请你探究△EMN的面积S(平方米)有无最大值,若有,请求出这个最大值;若没有,请说明理由.
得 分
评 卷 人
23. (本题满分10分)
已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)
F
B
A
D
C
E
G
第23题图②
F
B
A
D
C
E
G
第23题图①
D
F
B
A
C
E
第23题图③
窗体顶部
德州市二○○九年中等学校招生考试
数学试题参考解答及评分意见
评卷说明:
1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.
2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.
3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.
一、选择题:(本大题共8小题,每小题3分,共24分)
题号
1
2
3
4
5
6
7
8
答案
D
D
C
A
B
A
A
C
二、填空题:(本大题共8小题,每小题4分,共32分)
9.2.3×109; 10.乙;11.-2;12. ;13.点B
14.∠DAC=∠ADB,∠BAD=∠CDA,∠DBC=∠ACB,∠ABC=∠DCB,OB=OC,OA=OD; 15.或2; 16..
三、解答题:(本大题共7小题, 共64分)
17.(本小题满分7分)
解:原式=•………………………1分
=•………………………4分
= …………………………………………6分
==1. ……………………………………………7分
18.(本小题满分9分)
解:(1)该班60秒跳绳的平均次数至少是:=100.8.
因为100.8>100,所以一定超过全校平均次数. …………………3分
(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,所以中位数一定在100~120范围内. …………………………………………6分
(3)该班60秒跳绳成绩大于或等于100次的有:19+7+5+2=33(人),
……………………………………………………………………………8分
.所以,从该班任选一人,跳绳成绩达到或超过校平均次数的概率为0.66. ………………………………………………………… 9分
A
C
D
E
B
O
(第20题图)
l
19.(本题满分9分)
(1)解:在△AOC中,AC=2,
∵ AO=OC=2,
∴ △AOC是等边三角形.………2分
∴ ∠AOC=60°,
∴∠AEC=30°.…………………4分
(2)证明:∵OC⊥l,BD⊥l.
∴ OC∥BD. ……………………5分
∴ ∠ABD=∠AOC=60°.
∵ AB为⊙O的直径,
∴ △AEB为直角三角形,∠EAB=30°. …………………………7分
∴∠EAB=∠AEC.
∴ 四边形OBEC 为平行四边形. …………………………………8分
又∵ OB=OC=2.
∴ 四边形OBEC是菱形. …………………………………………9分
20.(本题满分9分)
解:(1)2007年销量为a万台,则a(1+40%)=350,a =250(万台).
…………………………………………………………………………3分
(2)设销售彩电x万台,则销售冰箱x万台,销售手机(350-x)万台.由题意得:1500x+2000×+800(350x)=500000. ……………6分
解得x=88. ………………………………………………………7分
∴ ,.
所以,彩电、冰箱(含冰柜)、手机三大类产品分别销售88万台、132万台、130万部.………………………………………………………………8分
∴ 88×1500×13%=17160(万元),132×2000×13%=34320(万元),
130×800×13%=13520(万元).
获得的政府补贴分别是17160万元、34320万元、13520万元. ……9分
21.(本题满分10分)
A
B
C
(第21题图)
E
D
解:延长BC交AD于E点,则CE⊥AD.……1分
在Rt△AEC中,AC=10,
由坡比为1:可知:∠CAE=30°.………2分
∴ CE=AC·sin30°=10×=5,………3分
AE=AC·cos30°=10×=.……5分
在Rt△ABE中,
BE===11.……………………………8分
∵ BE=BC+CE,
∴ BC=BE-CE=11-5=6(米).
答:旗杆的高度为6米. …………………………………………10分
22.(本题满分10分)
N
EBB
G
D
M
A
B
C
解:(1)由题意,当MN和AB之间的距离为0.5米时,MN应位于DC下方,且此时△EMN中MN边上的高为0.5米.
所以,S△EMN==0.5(平方米).
即△EMN的面积为0.5平方米. …………2分
(2)①如图1所示,当MN在矩形区域滑动,
即0<x≤1时,
E
△EMN的面积S==;……3分
图1
②如图2所示,当MN在三角形区域滑动,
即1<x<时,
如图,连接EG,交CD于点F,交MN于点H,
∵ E为AB中点,
∴ F为CD中点,GF⊥CD,且FG=.
E
A
B
G
N
D
M
C
图2
H
F
又∵ MN∥CD,
∴ △MNG∽△DCG.
∴ ,即.……4分
故△EMN的面积S=
=; …………………5分
综合可得:
……………………………6分
(3)①当MN在矩形区域滑动时,,所以有;………7分
②当MN在三角形区域滑动时,S=.
因而,当(米)时,S得到最大值,
最大值S===(平方米). ……………9分
∵ ,
∴ S有最大值,最大值为平方米. ……………………………10分
A
D
F
B
C
E
G
图 ①
23.(本题满分10分)
解:(1)证明:在Rt△FCD中,
∵G为DF的中点,∴ CG=FD.………… 1分
同理,在Rt△DEF中,
EG=FD. ………………2分
∴ CG=EG.…………………3分
(2)(1)中结论仍然成立,即EG=CG.…………………………4分
证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
F
B
A
D
C
E
G
M
N
N
图 ②(一)
在△DAG与△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴ △DAG≌△DCG.
∴ AG=CG.………………………5分
在△DMG与△FNG中,
∵ ∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴ △DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN. ……………6分
在Rt△AMG 与Rt△ENG中,
∵ AM=EN, MG=NG,
∴ △AMG≌△ENG.
∴ AG=EG.
F
B
A
D
C
E
G
M
图 ②(二)
∴ EG=CG. ……………………………8分
证法二:延长CG至M,使MG=CG,
连接MF,ME,EC, ……………………4分
在△DCG 与△FMG中,
∵FG=DG,∠MGF=∠CGD,MG=CG,
∴△DCG ≌△FMG.
∴MF=CD,∠FMG=∠DCG.
∴MF∥CD∥AB.………………………5分
∴.
在Rt△MFE 与Rt△CBE中,
∵ MF=CB,EF=BE,
∴△MFE ≌△CBE.
∴.…………………………………………………6分
F
B
A
D
C
E
图③
G
∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°. …………7分
∴ △MEC为直角三角形.
∵ MG = CG,
∴ EG=MC.
∴ .………………………………8分
(3)(1)中的结论仍然成立,
即EG=CG.其他的结论还有:EG⊥CG.……10分