- 313.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年天津市中考数学试卷
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算(﹣3)+5的结果等于( )
A.2 B.﹣2 C.8 D.﹣8
2.cos60°的值等于( )
A. B.1 C. D.
3.在一些美术字中,有的汉子是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
4.据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为( )
A.0.1263×108 B.1.263×107 C.12.63×106 D.126.3×105
5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
6.估计的值在( )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
7.计算的结果为( )
A.1 B.a C.a+1 D.
8.方程组的解是( )
A. B. C. D.
9.如图,将△ABC绕点B顺时针旋转60°得△
DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是( )
A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC
10.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
11.如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是( )
A.BC B.CE C.AD D.AC
12.已知抛物线y=x2﹣4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,则平移后的抛物线解析式为( )
A.y=x2+2x+1 B.y=x2+2x﹣1 C.y=x2﹣2x+1 D.y=x2﹣2x﹣1
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算x7÷x4的结果等于 .
14.计算的结果等于 .
15.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .
16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 (写出一个即可).2-1-c-n-j-y
17.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为 .
18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(1)AB的长等于 ;
(2)在△ABC的内部有一点P,满足S△PAB:S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明) .21*cnjy*com
三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
19.解不等式组
请结合题意填空,完成本题的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为 .
20.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(1)本次接受调查的跳水运动员人数为 ,图①中m的值为 ;
(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.
21.已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1)如图①,求∠T和∠CDB的大小;
(2)如图②,当BE=BC时,求∠CDO的大小.
22.如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).
参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,取1.414.
23.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
一次复印页数(页)
5
10
20
30
…
甲复印店收费(元)
0.5
2
…
乙复印店收费(元)
0.6
2.4
…
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
24.将一个直角三角形纸片ABO放置在平面直角坐标系中,点,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A的对应点A'.
(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;
(2)如图②,当P为AB中点时,求A'B的长;
(3)当∠BPA'=30°时,求点P的坐标(直接写出结果即可).
25.已知抛物线y=x2+bx﹣3(b是常数)经过点A(﹣1,0).
(1)求该抛物线的解析式和顶点坐标;
(2)P(m,t)为抛物线上的一个动点,P关于原点的对称点为P'.
①当点P'落在该抛物线上时,求m的值;
②当点P'落在第二象限内,P'A2取得最小值时,求m的值.
2017年天津市中考数学试卷 答案
一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一项是符合题目要求的)21·cn·jy·com
1.A 2 D 3. C. 4.B. 5.D.6.C 7.A 8 .D
9.C【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,
∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,
∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选C.
10.B【解答】解:∵k=﹣3<0,
∴在第四象限,y随x的增大而增大,∴y2<y3<0,
∵y1>0,∴y2<y3<y1,故选:B.
11.B【解答】解:如图连接PC,
∵AB=AC,BD=CD,∴AD⊥BC,∴PB=PC,∴PB+PE=PC+PE,
∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE,
12.A【解答】解:当y=0,则0=x2﹣4x+3,
(x﹣1)(x﹣3)=0,
解得:x1=1,x2=3,∴A(1,0),B(3,0),
y=x2﹣4x+3=(x﹣2)2﹣1, ∴M点坐标为:(2,﹣1),
∵平移该抛物线,使点M平移后的对应点M'落在x轴上,点B平移后的对应点B'落在y轴上,
∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,
∴平移后的解析式为:y=(x+1)2=x2+2x+1.故选:A.
二、填空题(本大题共6小题,每小题3分,共18分)
13.计算x7÷x4的结果等于 x3 .
14.计算的结果等于 9 .
15.【解答】解:∵共6个球,有5个红球,
∴从袋子中随机摸出一个球,它是红球的概率为.
16.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是 ﹣2 (写出一个即可).
17.
【解答】解:延长GE交AB于点O,作PH⊥OE于点H.
则PH∥AB.
∵P是AE的中点,∴PH是△AOE的中位线,∴PH=OA=(3﹣1)=1.
∵直角△AOE中,∠OAE=45°,∴△AOE是等腰直角三角形,即OA=OE=2,
同理△PHE中,HE=PH=1.
∴HG=HE+EG=1+1=2.∴在Rt△PHG中,PG===.
故答案是:.
18.【解答】解:(1)AB==.故答案为.
(2)如图AC与网格相交,得到点D、E,取格点F,连接FB并且延长,与网格相交,得到M,N,G.连接DN,EM,DG,DN与EM相交于点P,点P即为所求.
理由:平行四边形ABME的面积:平行四边形CDNB:平行四边形DEMG=1:2:3,
△PAB的面积=平行四边形ABME的面积,△PBC的面积=平行四边形CDNB的面积,△PAC的面积=△PNG的面积=△DGN的面积=平行四边形DEMG的面积,
∴S△PAB:S△PBC:S△PCA=1:2:3.
三、解答题(本大题共7小题,共66分。解答应写出文字说明、演算步骤或推理过程)
19.【解答】解:(1)解不等式①,得:x≥1;
(2)解不等式②,得:x≤3;
(3)把不等式①和②的解集在数轴上表示出来:
(4)原不等式组的解集为1≤x≤3,
故答案为:x≥1,x≤3,1≤x≤3.
20.【解答】解:(1)4÷10%=40(人),
m=100﹣27.5﹣25﹣7.5﹣10=30;
故答案为40,30.
(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15,
16出现12次,次数最多,众数为16;
按大小顺序排列,中间两个数都为15,中位数为15.
21.【解答】解:(1)如图①,∵连接AC,
∵AT是⊙O切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,
∵∠ABT=50°,∴∠T=90°﹣∠ABT=40°,
由AB是⊙O的直径,得∠ACB=90°,
∴∠CAB=90°﹣∠ABC=40°,∴∠CDB=∠CAB=40°;
(2)如图②,连接AD,
在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°,
∵OA=OD,∴∠ODA=∠OAD=65°,
∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA﹣∠ADC=65°﹣50°=15°.
22.【解答】解:如图作PC⊥AB于C.
由题意∠A=64°,∠B=45°,PA=120,
在Rt△APC中,sinA=,cosA=,
∴PC=PA•sinA=120•sin64°,
AC=PA•cosA=120•cos64°,
在Rt△PCB中,∵∠B=45°,∴PC=BC,∴PB==≈153.
∴AB=AC+BC=120•cos64°+120•sin64°≈120×0.90+120×0.44≈161.
答:BP的长为153海里和BA的长为161海里.
23.【解答】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2;【出处:21教育名师】
当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3;故答案为1,3;1.2,3.3;
(2)y1=0.1x(x≥0);
y2=;
(3)顾客在乙复印店复印花费少;
当x>70时,y1=0.1x,y2=0.09x+0.6,
∴y1﹣y2=0.1x﹣(0.09x+0.6)=0.01x﹣0.6,
设y=0.01x﹣0.6,
由0.01>0,则y随x的增大而增大,
当x=70时,y=0.1∴x>70时,y>0.1,∴y1>y2,
∴当x>70时,顾客在乙复印店复印花费少.
24.【解答】解:
(1)∵点,点B(0,1),∴OA=,OB=1,
由折叠的性质得:OA'=OA=,
∵A'B⊥OB,∴∠A'BO=90°,
在Rt△A'OB中,A'B==,
∴点A'的坐标为(,1);
(2)在Rt△ABO中,OA=,OB=1,∴AB==2,
∵P是AB的中点,∴AP=BP=1,OP=AB=1,
∴OB=OP=BP∴△BOP是等边三角形,∴∠BOP=∠BPO=60°,
∴∠OPA=180°﹣∠BPO=120°,
由折叠的性质得:∠OPA'=∠OPA=120°,PA'=PA=1,
∴∠BOP+∠OPA'=180°,∴OB∥PA',
又∵OB=PA'=1,∴四边形OPA'B是平行四边形,∴A'B=OP=1;
(3)设P(x,y),分两种情况:
①如图③所示:点A'在y轴上,
在△OPA'和△OPA中,,
∴△OPA'≌△OPA(SSS),∴∠A'OP=∠AOP=∠AOB=45°,
∴点P在∠AOB的平分线上,
设直线AB的解析式为y=kx+b,
把点,点B(0,1)代入得:,
解得:,
∴直线AB的解析式为y=﹣x+1,∵P(x,y),∴x=﹣x+1,
解得:x=, ∴P(,);
②如图④所示:
由折叠的性质得:∠A'=∠A=30°,OA'=OA,
∵∠BPA'=30°,∴∠A'=∠A=∠BPA',∴OA'∥AP,PA'∥OA,
∴四边形OAPA'是菱形,∴PA=OA=,作PM⊥OA于M,如图④所示:
∵∠A=30°,∴PM=PA=,
把y=代入y=﹣x+1得: =﹣x+1,
解得:x=,∴P(,);
综上所述:当∠BPA'=30°时,点P的坐标为(,)或(,
).
25.【解答】解:
(1)∵抛物线y=x2+bx﹣3经过点A(﹣1,0),
∴0=1﹣b﹣3,解得b=﹣2,∴抛物线解析式为y=x2﹣2x﹣3,
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线顶点坐标为(1,﹣4);
(2)①由P(m,t)在抛物线上可得t=m2﹣2m﹣3,
∵点P′与P关于原点对称,∴P′(﹣m,﹣t),
∵点P′落在抛物线上,
∴﹣t=(﹣m)2﹣2(﹣m)﹣3,即t=﹣m2﹣2m+3,
∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m=或m=﹣;
②由题意可知P′(﹣m,﹣t)在第二象限,
∴﹣m<0,﹣t>0,即m>0,t<0,
∵抛物线的顶点坐标为(1,﹣4),∴﹣4≤t<0,
∵P在抛物线上,∴t=m2﹣2m﹣3,∴m2﹣2m=t+3,
∵A(﹣1,0),P′(﹣m,﹣t),
∴P′A2=(﹣m+1)2+(﹣t)2=m2﹣2m+1+t2=t2+t+4=(t+)2+;
∴当t=﹣时,P′A2有最小值,
∴﹣=m2﹣2m﹣3,解得m=或m=,
∵m>0,
∴m=不合题意,舍去,
∴m的值为.