- 170.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 分式
一、 知识清单梳理
知识点一:分式的相关概念
关键点拨及对应举例
1. 分式的概念
(1)分式:形如 (A,B是整式,且B中含有字母,B≠0)的式子.
(2)最简分式:分子和分母没有公因式的分式.
在判断某个式子是否为分式时,应注意:(1)判断化简之间的式子;(2)π是常数,不是字母. 例:下列分式:①;②; ③;④,其中是分式是②③④;最简分式 ③.
2.分式的意义
(1)无意义的条件:当B=0时,分式无意义;
(2)有意义的条件:当B≠0时,分式有意义;
(3)值为零的条件:当A=0,B≠0时,分式=0.
失分点警示:在解决分式的值为0,求值的问题时,一定要注意所求得的值满足分母不为0.
例: 当的值为0时,则x=-1.
3.基本性质
( 1 ) 基本性质:(C≠0).
(2)由基本性质可推理出变号法则为:
; .
由分式的基本性质可将分式进行化简:
例:化简:=.
知识点三 :分式的运算
4.分式的约分和通分
(1)约分(可化简分式):把分式的分子和分母中的公因式约去,
即;
(2)通分(可化为同分母):根据分式的基本性质,把异分母的分式化为同分母的分式,即
分式通分的关键步骤是找出分式的最
简公分母,然后根据分式的性质通分.
例:分式和的最简公分母为.
5.分式的加减法
(1)同分母:分母不变,分子相加减.即±=;
(2)异分母:先通分,变为同分母的分式,再加减.即±=.
例: =-1.
6.分式的乘除法
(1)乘法:·=; (2)除法:=;
(3)乘方:= (n为正整数).
例:=;=2y;
=.
7.分式的混合运算
(1)仅含有乘除运算:首先观察分子、分母能否分解因式,若能,就要先分解后约分.
(2)含有括号的运算:注意运算顺序和运算律的合理应用.一般先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.
失分点警示:分式化简求值问题,要先将分式化简到最简分式或整式的形式,再代入求值.代入数值时注意要使原分式有意义.有时也需运用到整体代入.