• 394.00 KB
  • 2021-05-10 发布

2014嘉兴中考数学试卷及答案

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2014年浙江省初中毕业生学业考试(嘉兴卷)‎ 数学 试题卷 考生须知:‎ 1. 全卷满分150分,考试时间120分钟,试题卷共6页,有三大题,共24小题。‎ 2. 全卷答案必须做在答题卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效。‎ 3. 本次考试不使用计算器。‎ 参考公式:二次函数图象的顶点坐标是。‎ 温馨提示:请仔细审题,细心答题,答题前仔细阅读答题纸上的“注意事项”。‎ 卷Ⅰ(选择题)‎ 一、 选择题(本题有10小题,每小题4分,共40分,请选出各题中唯的正确选项,不选、多选、错选,均不得分)‎ ‎1.的绝对值为( ▲ )‎ ‎(A) (B) (C) (D)‎ ‎2.如图,AB//CD,EF分别为交AB,CD于点E,F,∠1=50°,则∠2的度数为( ▲ )2·1·c·n·j·y ‎(A) 50° (B) 120° (C) 130° (D) 150°‎ ‎3.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是( ▲ )‎ ‎(A) 6 (B) 7 (C) 8 (D) 9‎ ‎4.2013年12月15日,我国“玉兔号”月球车顺利抵达月球表面,月球离地球平均距离是 ‎ 384 400 000米,数据384 400 000用科学计数法表示为( ▲ )‎ ‎(A) (B) (C) (D) ‎ ‎5.小红同学将自己5月份和各项消费情况制作成扇形统计图(如图),从图中可看出( ▲ )‎ 小红5月份消费情况扇形统计图 ‎(第5题)‎ ‎(A) 各项消费金额占消费总金额的百分比 ‎ ‎(B) 各项消费的金额 ‎(C) 消费的总金额 ‎(D) 各项消费金额的增减变化情况 ‎(第6题)‎ ‎6.如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为( ▲ )‎ ‎(A) 2 (B) 4 (C) 6 (D) 8‎ ‎7.下列运算正确的是( ▲ )‎ ‎(A) (B) ‎ ‎(C) (D) ‎ ‎8.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径 为( ▲ )‎ ‎(第9题)‎ ‎(A) 1.5 (B) 2 (C) 2.5 (D) 3‎ ‎9.如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点,现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH,若HG延长线恰好经过点D,则CD的长为( ▲ )【‎ ‎ (A) 2cm (B) cm (C) 4cm (D) cm ‎10.当时,二次函数有最大值4,则实数的值为( ▲ )‎ ‎(A) (B) 或 ‎ ‎(第12题)‎ ‎(C) 或 (D) 或或 卷Ⅰ(非选择题)‎ ‎(第9题)‎ ‎(第9题)‎ 一、 填空题(本题有6小题,每小题5分,共30分)‎ ‎11.方程的根为 ▲ .‎ ‎(第9题)‎ ‎12.如图,在直角坐标系中,已知点,点,平移线段AB,使点A落在,点B落在点B1.,则点B1.的坐标为 ▲ .‎ ‎13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,‎ 则树高BC为 ▲ 米(用含α的代数式表示).‎ ‎14.有两辆四按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为 ▲ .www-2-1-cnjy-com ‎15.点,是直线上的两点,则 ▲ 0(填“>”或“<”).‎ ‎(第16题)‎ ‎16.如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.下列结论:①CE=CF;②线段EF的最小值为;③当AD=2时,EF与半圆相切;④若点F恰好落在B C上,则AD=;⑤当点D从点A运动到点B时,线段EF扫过的面积是.其中正确结论的序号是 ▲ .2-1-c-n-j-y 友情提示:做解答题,别忘了写出必要的过程;作图(包括添加辅助线)最后必须用黑色字迹的签字笔可钢笔将线条描黑.‎ 三、解答题(本题有8小题,第17~20题每小题8分,第21题10分,第22,23题每小题12分,第24题14分,共80分) ‎ ‎17.(1)计算:; (2)化简:‎ ‎18.解方程:‎ ‎19.某校为了了解学生孝敬父母的情况(选项:A.为父母洗一次脚;B.帮父母做一次家务;‎ ‎ C.给父母买一件礼物;D.其它),在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):‎ 学生孝敬父母情况条形统计图 学生孝敬父母情况统计表 根据以上信息解答下列问题:‎ 选项 频数 频率 A ‎0.15‎ B ‎60‎ C ‎0.4‎ D ‎48‎ ‎0.2‎ ‎(第19题)‎ (1) 这次被调查的学生有多少人?‎ (2) 求表中,,的值,并补全条形统计图.‎ (3) 该校有1600名学生,估计该校全体学生中选择B选项的有多少人?‎ ‎20.已知:如图,在□ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.‎ ‎(1)求证:△DOE≌△BOF.‎ ‎(2)当∠DOE等于多少度时,四边形BFED为菱形?请说明理由.‎ ‎(第20题)‎ ‎21.某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.‎ ‎(1)求每辆A型车和B型车的售价各为多少元.‎ ‎(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?‎ ‎22实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5小时后(包括1.5小时)与可近似地用反比例函数刻画(如图所示).‎ ‎(第22题)‎ ‎(1)根据上述数学模型计算:‎ ‎ ①喝酒后几时血液中的酒精含量达到最大值?最大值 为多少?‎ ‎②当时,,求的值.‎ ‎(2)按国家规定,车辆驾驶人员血液中的酒精含量大于 ‎ 或等于20毫克/百毫升时属于“酒后驾驶”,不能驾 ‎ 车上路.参照上述数学模型,假设某驾驶员晚上 ‎ 20:00在家喝完半斤低度白酒,第二天早上7:00能 ‎ 否驾车去上班?请说明理由.‎ ‎23.类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形” .‎ ‎(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,‎ ‎∠B=80°.求∠C,∠D的度数.‎ ‎ (2)在探究“等对角四边形”性质时:‎ ‎ ①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;‎ ‎②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等” .你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.‎ ‎(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.‎ 求对角线AC的长.‎ 第23题图1‎ 第23题图2‎ ‎ ‎ ‎24.如图,在平面直角坐标系中,A是抛物线上的一个动点,且点A在第一象限内.‎ AE⊥轴于点E,点B坐标为(0,2),直线AB交轴于点C,点D与点C关于轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为,△BED的面积为.‎ ‎(1)当时,求的值.‎ ‎ (2)求关于的函数解析式.‎ ‎(3)①若时,求的值;‎ ‎②当时,设,猜想与的数量关系并证明.‎