- 365.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年黑龙江省哈尔滨市中考数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)﹣7的倒数是( )
A.7 B.﹣7 C. D.﹣
2.(3分)下列运算正确的是( )
A.a6÷a3=a2 B.2a3+3a3=5a6 C.(﹣a3)2=a6 D.(a+b)2=a2+b2
3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
4.(3分)抛物线y=﹣(x+)2﹣3的顶点坐标是( )
A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3)
5.(3分)五个大小相同的正方体搭成的几何体如图所示,其左视图是( )
A. B. C. D.
6.(3分)方程=的解为( )
A.x=3 B.x=4 C.x=5 D.x=﹣5
7.(3分)如图,⊙O中,弦AB,CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是( )
A.43° B.35° C.34° D.44°
8.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为( )
A. B. C. D.
9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )
A.= B.= C.= D.=
10.(3分)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( )
A.小涛家离报亭的距离是900m B.小涛从家去报亭的平均速度是60m/min
C.小涛从报亭返回家中的平均速度是80m/min D.小涛在报亭看报用了15min
二、填空题(本大题共10小题,每小题3分,共30分)
11.(3分)将57600000用科学记数法表示为 .
12.(3分)函数y=中,自变量x的取值范围是 .
13.(3分)把多项式4ax2﹣9ay2分解因式的结果是 .
14.(3分)计算﹣6的结果是 .
15.(3分)已知反比例函数y=的图象经过点(1,2),则k的值为 .
16.(3分)不等式组的解集是 .
17.(3分)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .
18.(3分)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为 度.
19.(3分)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 .
20.(3分)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 .
三、解答题(本大题共60分)
21.(7分)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.
22.(7分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.
23.(8分)随着社会经济的发展和城市周边交通状况的改善,旅游已成为人们的一种生活时尚,洪祥中学开展以“我最喜欢的风景区”为主题的调查活动,围绕“在松峰山、太阳岛、二龙山和凤凰山四个风景区中,你最喜欢哪一个?(必选且只选一个)”的问题,在全校范围内随机抽取了部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:
(1)本次调查共抽取了多少名学生?
(2)通过计算补全条形统计图;
(3)若洪祥中学共有1350名学生,请你估计最喜欢太阳岛风景区的学生有多少名.
24.(8分)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
25.(10分)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
26.(10分)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.
27.(10分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线y=x﹣3经过B、C两点.
(1)求抛物线的解析式;
(2)过点C作直线CD⊥y轴交抛物线于另一点D,点P是直线CD下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P作PE⊥x轴于点E,PE交CD于点F,交BC于点M,连接AC,过点M作MN⊥AC于点N,设点P的横坐标为t,线段MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,连接PC,过点B作BQ⊥PC于点Q(点Q在线段PC上),BQ交CD于点T,连接OQ交CD于点S,当ST=TD时,求线段MN的长.
2017年黑龙江省哈尔滨市中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分)
故选:1、D.2.故选C3.故选:D.4.故选B.5.故选:C.6.故选(C)7.故选B.
8.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,
∴BC==,则cosB==,故选A
9.【解答】解:(A)∵DE∥BC,∴△ADE∽△ABC,
∴,故A错误;(B)∵DE∥BC,∴,故B错误;(C)∵DE∥BC,
,故C正确;(D))∵DE∥BC,∴△AGE∽△AFC,∴=,故D错误;故选(C)
10.(3分)
A.小涛家离报亭的距离是900m
B.小涛从家去报亭的平均速度是60m/min
C.小涛从报亭返回家中的平均速度是80m/min
D.小涛在报亭看报用了15min
【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;
B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;
C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;
D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;
故选:D.
二、填空题(本大题共10小题,每小题3分,共30分)
11.(3分)(2017•哈尔滨)将57600000用科学记数法表示为 5.76×107 .
n是负数.
12.(3分)(2017•哈尔滨)函数y=中,自变量x的取值范围是 x≠2 .
13.(3分)(2017•哈尔滨)把多项式4ax2﹣9ay2分解因式的结果是 a(2x+3y)(2x﹣3y) .
14.(3分)(2017•哈尔滨)计算﹣6的结果是 .
15.(3分)(2017•哈尔滨)已知反比例函数y=的图象经过点(1,2),则k的值为 1 .
16.(3分)(2017•哈尔滨)不等式组的解集是 2≤x<3 .
17.(3分)(2017•哈尔滨)一个不透明的袋子中装有17个小球,其中6个红球、11个绿球,这些小球除颜色外无其它差别.从袋子中随机摸出一个小球,则摸出的小球是红球的概率为 .
18.(3分)(2017•哈尔滨)已知扇形的弧长为4π,半径为48,则此扇形的圆心角为 15 度.
则=4π,
19.(3分)(2017•哈尔滨)四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 4或2 .
【分析】由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,OB=BD=3,由勾股定理得出OC=OA==3,即可得出答案.
20.(3分)(2017•哈尔滨)如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为 .
【分析】由AAS证明△ABM≌△DEA,得出AM=AD,证出BC=AD=3EM,连接DM,由HL证明Rt△DEM≌Rt△DCM,得出EM=CM,因此BC=3CM,设EM=CM=x,则BM=2x,AM=BC=3x,在Rt△ABM中,由勾股定理得出方程,解方程即可.
【解答】解:∵四边形ABCD是矩形,
∴AB=DC=1,∠B=∠C=90°,AD∥BC,AD=BC,
∴∠AMB=∠DAE,
∵DE=DC,
∴AB=DE,
∵DE⊥AM,
∴∠DEA=∠DEM=90°,
在△ABM和△DEA中,,
∴△ABM≌△DEA(AAS),
∴AM=AD,
∵AE=2EM,
∴BC=AD=3EM,
连接DM,如图所示:
在Rt△DEM和Rt△DCM中,,
∴Rt△DEM≌Rt△DCM(HL),
∴EM=CM,
∴BC=3CM,
设EM=CM=x,则BM=2x,AM=BC=3x,
在Rt△ABM中,由勾股定理得:12+(2x)2=(3x)2,
解得:x=,
∴BM=;
故答案为:.
三、解答题(本大题共60分)
21.(7分)(2017•哈尔滨)先化简,再求代数式÷﹣的值,其中x=4sin60°﹣2.
【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
22.
(2)平行四边形ABDE如图所示,CD==.
23.【解答】解:(1)10÷20%=50(名),
答:本次调查共抽取了50名学生;
(2)50﹣10﹣20﹣12=8(名),
补全条形统计图如图所示,
(3)1350×=540(名),
答:估计最喜欢太阳岛风景区的学生有540名.
24.(8分)(2017•哈尔滨)已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.
(1)如图1,求证:AE=BD;
(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.
【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,
∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,
在△ACE与△BCD中,
∴△ACE≌△BCD(SAS),∴AE=BD,
(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);
由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,
∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,
∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)
25.(10分)(2017•哈尔滨)威丽商场销售A,B两种商品,售出1件A种商品和4件B种商品所得利润为600元,售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件.如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
【解答】解:(1)设每件A种商品售出后所得利润为x元,每件B种商品售出后所得利润为y元.由题意,得
,
解得:
答:每件A种商品售出后所得利润为200元,每件B种商品售出后所得利润为100元.
(2)设购进A种商品a件,则购进B种商品(34﹣a)件.由题意,得
200a+100(34﹣a)≥4000,
解得:a≥6
答:威丽商场至少需购进6件A种商品.
26.(10分)(2017•哈尔滨)已知:AB是⊙O的弦,点C是的中点,连接OB、OC,OC交AB于点D.
(1)如图1,求证:AD=BD;
(2)如图2,过点B作⊙O的切线交OC的延长线于点M,点P是上一点,连接AP、BP,求证:∠APB﹣∠OMB=90°;
(3)如图3,在(2)的条件下,连接DP、MP,延长MP交⊙O于点Q,若MQ=6DP,sin∠ABO=,求的值.
【解答】(1)证明:如图1,连接OA,
∵C是的中点,∴,∴∠AOC=∠BOC,∵OA=OB,∴OD⊥AB,AD=BD;
(2)证明:如图2,延长BO交⊙O于点T,连接PT∵BT是⊙O的直径
∴∠BPT=90°,∴∠APT=∠APB﹣∠BPT=∠APB﹣90°,∵BM是⊙O的切线,∴OB⊥BM,
又∠OBA+∠MBA=90°,∴∠ABO=∠OMB又∠ABO=∠APT∴∠APB﹣90°=∠OMB,∴∠APB﹣∠OMB=90°;
(3)解:如图3,连接MA,∵MO垂直平分AB,∴MA=MB,∴∠MAB=∠MBA,作∠PMG=∠AMB,
在射线MG上截取MN=MP,连接PN,BN,则∠AMP=∠BMN,∴△APM≌△BNM,∴AP=BN,∠MAP=∠MBN,
延长PD至点K,使DK=DP,连接AK、BK,∴四边形APBK是平行四边形;AP∥BK,∴∠PAB=∠ABK,∠APB+∠PBK=180°,
由(2)得∠APB﹣(90°﹣∠MBA)=90°,∴∠APB+∠MBA=180°∴∠PBK=∠MBA,∴∠MBP=∠ABK=∠PAB,
∴∠MAP=∠PBA=∠MBN,∴∠NBP=∠KBP,∵PB=PB,∴△PBN≌△PBK,∴PN=PK=2PD,过点M作MH⊥PN于点H,
∴PN=2PH,∴PH=DP,∠PMH=∠ABO,∵sin∠PMH=,sin∠ABO=,∴,∴,设DP=3a,则PM=5a,
∴MQ=6DP=18a,∴.
【解答】解:(1)∵直线y=x﹣3经过B、C两点,
∴B(3,0),C(0,﹣3),∵y=x2+bx+c经过B、C两点,∴,解得,
故抛物线的解析式为y=x2﹣2x﹣3;
(2)如图1,y=x2﹣2x﹣3,y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∴A(﹣1,0),
∴OA=1,OB=OC=3,∴∠ABC=45°,AC=,AB=4,∵PE⊥x轴,∴∠EMB=∠EBM=45°,
∵点P的横坐标为1,∴EM=EB=3﹣t,连结AM,∵S△ABC=S△AMC+S△AMB,∴AB•OC=AC•MN+AB•EM,
∴×4×3=×d+×4(3﹣t),∴d=t;
(3)如图2,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为x=1,∴由抛物线对称性可得D(2,﹣3),∴CD=2,
过点B作BK⊥CD交直线CD于点K,
∴四边形OCKB为正方形,∴∠OBK=90°,CK=OB=BK=3,∴DK=1,∵BQ⊥CP,∴∠CQB=90°,
过点O作OH⊥PC交PC延长线于点H,OR⊥BQ交BQ于点I交BK于点R,OG⊥OS交KB于G,
∴∠OHC=∠OIQ=∠OIB=90°,∴四边形OHQI为矩形,∵∠OCQ+∠OBQ=180°,∴∠OBG=∠OCS,
∵OB=OC,∠BOG=∠COS,∴△OBG≌△OCS,∴QG=OS,∠GOB=∠SOC,∴∠SOG=90°,
∴∠ROG=45°,∵OR=OR,∴△OSR≌△OGR,∴SR=GR,∴SR=CS+BR,∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,
∴∠BOR=∠TBK,∴tan∠BOR=tan∠TBK,∴=,∴BR=TK,∵∠CTQ=∠BTK,∴∠QCT=∠TBK,
∴tan∠QCT=tan∠TBK,设ST=TD=m,∴SK=2m+1,CS=2﹣2m,TK=m+1=BR,SR=3﹣m,RK=2﹣m,
在Rt△SKR中,∵SK2+RK2=SR2,∴(2m+1)2+(2﹣m)2=(3﹣m)2,
解得m1=﹣2(舍去),m2=;∴ST=TD=,TK=,∴tan∠TBK==÷3=,
∴tan∠PCD=,过点P作PE′⊥x轴于E′交CD于点F′,∵CF′=OE′=t,∴PF′=t,∴PE′=t+3,
∴P(t,﹣t﹣3),∴﹣t﹣3=t2﹣2t﹣3,解得t1=0(舍去),t2=.
∴MN=d=t=×=.