- 476.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2018年安徽省中考数学试卷
一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的。
1.的绝对值是( )
A. B.8 C. D.
2.2017年我省粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( )
A. B. C. D.
3.下列运算正确的是( )
A. B. C. D.
4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
A. B. C. D.
5.下列分解因式正确的是( )
A. B.
C. D.
6.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则( )
A. B.
C. D.[来源:学|科|网]
7.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为(
)
A. B.1 C. D.
8.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
甲
2
6
7
7
8
乙
2]
3
4
8
8
类于以上数据,说法正确的是( )
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
9.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
10.如图,直线都与直线l垂直,垂足分别为M,N,MN=1正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象太致为( )
A. B. C. D.
二、 填空题(本大共4小题,每小题5分,满分30分)
11. 不等式的解集是 。
12如图,菱形ABOC的AB,AC分别与⊙O相切于点D,E若点D是AB的中点,则
∠DOE 。
13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=k,使其经过点B,得到直线l,则直线l对应的函数表达式是 。
14.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数 。
三、 (本大题共2小题,每小题8分,满分16分)
15.计算:
16.《孙子算经》中有过样一道题,原文如下:
“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”
大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?
请解答上述问题。
四、(本大题共2小题,每小题8分,满分16分)
17.如图,在由边长为1个单位长度的小正方形组成的10×10网格中,
已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;
(2)将线段绕点逆时针旋转90°得到线段.画出线段;
(3)以为顶点的四边形的面积是个平方单位.
18. 观察以下等式:
第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
第5个等式:,
……
按照以上规律,解决下列问题:
(1)写出第6个等式: ;
(2)写出你猜想的第n个等式: (用含n的等式表示),并证明.
五、(本大题共2小题,每小题10分,满分20分)
19.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
[来源:学.科.网Z.X.X.K]
20.如图,⊙O为锐角△ABC的外接圆,半径为5.
(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);
(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.
六、{本题满分12分)
21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:
扇形统计图 频数直方图
(1)本次比赛参赛选手共有 人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为 ;
(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;
(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.
七、(本题满分12分)
22.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:
①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.
小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)
(1)用含x的代数式分别表示W1,W2;
(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?
八、(本题满分14分)
23.如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.
(1)求证:CM=EM;
(2)若∠BAC=50°,求∠EMF的大小;
(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.
图1 图2
2018年安徽省中考数学试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题4分,满分40分)
1.的绝对值是( )
A. B.8 C. D.
【答案】B
【解析】根据绝对值的的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可.
【解答】数轴上表示数-8的点到原点的距离是8,
所以-8的绝对值是8,
故选B.
【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.
2.2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示( )
A. B. C. D.
【答案】C
【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,
所以635.2亿用科学记数法表示为:6.352×108,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.下列运算正确的是( )
A. B. C. D.
【答案】D
【解析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.
【解答】A. a23=a6 ,故A选项错误;
B. a2⋅a4=a6 ,故B选项错误;
C. a6÷a3=a3 ,故C选项错误;
D. ab3=a3b3,正确,
故选D.
【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.
4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )
A. B. C. D.
【答案】A
【解析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.
【解答】观察实物,可知这个几何体的主视图为长方体上面一个三角形,
只有A选项符合题意,
故选A.
【点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.
5.下列分解因式正确的是( )
A. B.
C. D.
【答案】C
【解析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.
【解答】A. -x2+4x=-x(x-4) ,故A选项错误;
B. x2+xy+x=x(x+y+1),故B选项错误;
C. x(x-y)+y(y-x)=(x-y)2 ,故C选项正确;
D. x2-4x+4=(x-2)2,故D选项错误,
故选C.
【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.
6.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则( )
A. B.
C. D.[来
【答案】B
【解析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.
【解答】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,
2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,
故选B.
【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.
7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A. B.1 C. D.
【答案】A
【解析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【解答】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
8.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:
甲
2
6
7
7
8
乙
2]
3
4
8
8
类于以上数据,说法正确的是( )
A.甲、乙的众数相同 B.甲、乙的中位数相同
C.甲的平均数小于乙的平均数 D.甲的方差小于乙的方差
【答案】D
【解析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.
【解答】甲:数据7出现了2次,次数最多,所以众数为7,
排序后最中间的数是7,所以中位数是7,