- 635.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考数学复习专题5平行线与三角形
平行线与三角形基础梳理:
(一)平行线
1. 定义:在同一平面内,不相交的两条直线叫做平行线。
2. 判定:
(1) 同位角相等,两直线平行。
(2) 内错角相等,两直线平行。
(3) 同旁内角相等,两直线平行。
(4) 垂直于同一直线的两直线平行。
3. 性质:
(1) 经过直线外一点,有且只有一条直线与这条直线平行。
(2) 如果两条直线都与第三条直线平行,那么这两条直线平行。
(3) 两直线平行,同位角相等。
(4) 两直线平行,内错角相等。
(5) 两直线平行,同旁内角互补。
(二)三角形
4. 一般三角形的性质
(1) 角与角的关系:
三个内角的和等于180°;
一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角。
(2) 边与边的关系:
三角形中任两边之和大于第三边,任两边之差小于第三边。
(3) 边与角的大小对应关系:
在一个三角形中,等边对等角;等角对等边。
(4) 三角形的主要线段的性质(见下表):
名称
基本性质
角平分线
三角形三条内角平分线相交于一点(内心);内心到三角形三边距离相等;角平分线上任一点到角的两边距离相等。
中线
三角形的三条中线相交于一点。
高
三角形的三条高相交于一点。
边的垂直平分线
三角形的三边的垂直平分线相交于一点(外心);
外心到三角形三个顶点的距离相等。
中位线
三角形的中位线平行于第三边且等于第三边的一半。
5. 几种特殊三角形的特殊性质
(1) 等腰三角形的特殊性质:
①等腰三角形的两个底角相等;
②等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这条线段所在的直线是等腰三角形的对称轴。
(2) 等边三角形的特殊性质:
①等边三角形每个内角都等于60°;
②等边三角形外心、内心合一。
(1) 直角三角形的特殊性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
① 勾股定理:直角三角形斜边的平方等于两直角边的平方和
(其逆命题也成立);
② 直角三角形中,30°的角所对的直角边等于斜边的一半;
⑤直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
2. 三角形的面积
(1) 一般三角形:S △ = a h( h 是a边上的高 )
(2) 直角三角形:S △ = a b = c h(a、b是直角边,c是斜边,h是斜边上的高)
(3) 等边三角形: S △ = a 2( a是边长 )
(4) 等底等高的三角形面积相等;等底的三角形面积的比等于它们的相应的高的比;等高的三角形的面积的比等于它们的相应的底的比。
全等三角形
【课前热身】
1. 如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.
B
A
E
F
C
D
(第1题) (第2题) (第3题)
2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去 B.带②去 C.带③去 D.带①和②去
3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.
4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是( )
A. ∠B=∠B/ B. ∠C=∠C/ C. BC=B/C/ D. AC=A/C/
【考点链接】
1.全等三角形:____________、______________的三角形叫全等三角形.
2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.
3. 全等三角形的性质:全等三角形___________,____________.
4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.
【典例精析】
例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F.
求证:AB=CF.
例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,
且AE∥BC.求证:(1)△AEF≌△BCD; (2)EF∥CD.
【中考演练】
1.(08遵义)如图,,,,,则等于( )
A. B. C. D.
2. ( 08双柏) 如图,点在的平分线上,,则需添加的一个条件是 (只写一个即可,不添加辅助线):
O
E
A
B
D
C
(第1题) (第2题) (第3题)
A
B
C
D
F
E
3. ( 08郴州) 如图,D是AB边上的中点,将沿过D的直线折叠,使点A落在BC上F处,若,则 __________度.
4. (08荆州)如图,矩形ABCD中,点E是BC上一点,
AE=AD,DF⊥AE于F,连结DE,
求证:DF=DC.
5. 如图,AB=AD,BC=DC,AC与BD交于点E,由这些条件你能推出哪些结论?
(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)
E
B
C
D
A
﹡C
B
O
D
A
E
6. (08东莞) 如图,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.求∠AEB的大小.
相似三角形
【课前热身】
1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.
2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.
3.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是( )
A. B.
C. D.
4.在△ABC与△A′B′C′中,有下列条件:
(1);(2);(3)∠A=∠A′;(4)∠C=∠C′.
如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有多少组( )
A.1 B.2 C.3 D.4
【考点链接】
一、相似三角形的定义
三边对应成_________,三个角对应________的两个三角形叫做相似三角形.
二、相似三角形的判定方法
1. 若DE∥BC(A型和X型)则______________.
2. 射影定理:若CD为Rt△ABC斜边上的高(双直角图形)
则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=___________,CD2=____________,BC2=_______ ____.
3. 两个角对应相等的两个三角形__________.
4. 两边对应成_________且夹角相等的两个三角形相似.
5. 三边对应成比例的两个三角形___________.
三、相似三角形的性质
1. 相似三角形的对应边_________,对应角________.
2. 相似三角形的对应边的比叫做________,一般用k表示.
3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______线的比等于_______比,周长之比也等于________比,面积比等于________________.
【典例精析】
例1 在△ABC和△DEF中,已知∠A=∠D,AB=4,AC=3,DE=1,当DF等于多少时,这两个三角形相似.
例1 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,
要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶 点分别在AB、AC上,这个正方形零件的边长是多少?
例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片35cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?
【中考演练】
1.(08大连)如图,若△ABC∽△DEF,则∠D的度数为______________.
2. (08杭州) 在中, 为直角, 于点,,
写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_________.
(第1题) (第2题) (第3题)
3.( 08常州) 如图,在△ABC中,若DE∥BC,=,DE=4cm,则BC的长为 ( )
A.8cm B.12cm C.11cm D.10cm
4. (08无锡) 如图,已知是矩形的边上一点,于,
试证明.
锐角三角函数
【课前热身】
1.(06黑龙江)在△ABC中,∠C=90°,BC=2,sinA=,则AC的长是( )
A. B.3 C. D.
2.RtABC中,∠C=,∠A∶∠B=1∶2,则sinA的值( )
B(0,-4)
A(3,0)
0
x
y
A. B. C. D.1
3.如图,在平面直角坐标系中,已知点A(3,0),
点B(0,-4),则 等于_______.
4.=____________
α
a
b
c
【考点链接】
1.sinα,cosα,tanα定义
sinα=______,cosα=_______,tanα=______ .
2.特殊角三角函数值
30°
45°
60°
sinα
cosα
tanα
cotα
【典例精析】
例1 在Rt△ABC中,a=5,c=13,求sinA,cosA,tanA.
例2 计算:.
例3 等腰△ABC中,AB=AC=5,BC=8,求底角∠B的四个三角函数值.
【中考演练】
1.(08威海) 在△ABC中,∠C = 90°,tanA =,则sinB =( )
A. B. C. D.
2.若,则下列结论正确的为( )
A. 0°< ∠A < 30° B.30°< ∠A < 45°
C. 45°< ∠A < 60° D.60°< ∠A < 90°
3. (08连云港) 在中,,,,则
4.(07济宁) 计算的值是
5. 已知
6.△ABC中,若(sinA-)2+|-cosB|=0,求∠C的大小.
﹡7.(07长春)图中有两个正方形,A,C两点在大正方形的对角线上_
E
_
A
_
F
_
D
_
C
_
B
_
O
_
H
_
G
,△HAC是等边三角形,若AB=2,求EF的长.
F
A
B
C
D
E
﹡8.矩形ABCD中AB=10,BC=8, E为AD边上一点,沿BE将△BDE对折,点D正好落在AB边上,求 tan∠AFE.
解直角三角形及其应用
【课前热身】
1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)
2. 某坡面的坡度为1:,则坡角是_______度.
3.(07山东)王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地 ( )
A.150m B.m C.100 m D.m
【考点链接】
1.解直角三角形的概念:在直角三角形中已知一些__________________________________叫做解直角三角形.
2.解直角三角形的类型:
已知____________;已知___________________.
3.如图(1)解直角三角形的公式:
(1)三边关系:__________________.
(2)角关系:∠A+∠B=_____,
(3)边角关系:sinA=____,sinB=____,cosA=_____
cosB=____,tanA=_____ ,tanB=_____.
4.如图(2)仰角是____________,俯角是____________.
5.如图(3)方向角:OA:_____,OB:_______,OC:_______,OD:________.
6.如图(4)坡度:AB的坡度iAB=_______,∠α叫_____,tanα=i=____.
O
A
B
C
(图2) (图3) (图4)
【典例精析】
例1 Rt的斜边AB=5, ,求中的其他量.
例2 (08十堰) 海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.
【中考演练】
1.在中,,AB=5,AC=4,则 sinA的值是_________.
2.(乌兰察布)升国旗时,某同学站在离旗杆24m处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m,则旗杆高度约为_______.(取,结果精确到0.1m)
3.(云南)已知:如图,在ABC中,∠B = 45°,∠C = 60°,AB = 6.
求BC的长. (结果保留根号)
﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)