- 387.50 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2017年深圳市中考数学真题卷
一、选择题(每道题目只有一个正确答案。每题3分,共12题,共36分。)
1.﹣2的绝对值是( )
A.﹣2 B.2 C.﹣ D.
2.图中立体图形的主视图是( )
A. B. C. D.
3. 随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路
(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )
A.8.2×105 B.82×105 C.8.2×106 D.82×107
4.观察下列图形,其中既是轴对称又是中心对称图形的是( )
A. B. C. D.
5.下列选项中,哪个不可以得到l1∥l2?( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
6.不等式组的解集为( )
A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3
7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330
8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )
A.40° B.50° C.60° D.70°
9. 下列哪一个是假命题( )
A.五边形外角和为360° B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2) D.抛物线y=x2﹣4x+2017对称轴为直线x=2
10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( ) A.平均数 B.中位数 C.众数 D.方差
11.如下图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是( )m.
A.20 B.30 C.30 D.40
12.如下图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
(第11题图) (第12题图)
二、填空题(共4题,每题3分,共12分)
13.因式分解:a3﹣4a= .
14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .
15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= .
16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= .
三、解答题(共7道解答题)
17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.
18. (6分)先化简,再求值:(+)÷,其中x=﹣1.
19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.
类型
频数
频率
A
30
x
B
18
0.15
C
m
0.40
D
n
y
(1)学生共 人,x= ,y= ; (2)补全条形统计图;
(3)若该校共有2000人,骑共享单车的有 人.
20.(8分)一个矩形周长为56厘米.
(1)当矩形面积为180平方厘米时,长宽分别为多少? (2)能围成面积为200平方厘米的矩形吗?请说明理由.
21. (8分)如图一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.
(1) 直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;
(2)求证:AD=BC.
22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.
(1)求⊙O的半径r的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.
23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
参考答案与试题解析
一、选择题
1.(3分)﹣2的绝对值是( )
A.﹣2 B.2 C.﹣ D.
【解答】解:|﹣2|=2.
故选B.
2.(3分)图中立体图形的主视图是( )
A. B. C. D.
【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.
故选A.
3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )
A.8.2×105 B.82×105 C.8.2×106 D.82×107
【解答】解:将8200000用科学记数法表示为:8.2×106.
故选:C.
4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是( )
A. B. C. D.
【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;
B、是轴对称图形,不是中心对称图形,选项不符合题意;
C、是中心对称图形,不是轴对称图形,选项不符合题意;
D、是中心对称图形,也是轴对称图形,选项符合题意.
故选D.
5.(3分)下列选项中,哪个不可以得到l1∥l2?( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;
B、∵∠2=∠3,∴l1∥l2,故本选项错误;
C、∠3=∠5不能判定l1∥l2,故本选项正确;
D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.
故选C.
6.(3分)不等式组的解集为( )
A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3
【解答】解:解不等式3﹣2x<5,得:x>﹣1,
解不等式x﹣2<1,得:x<3,
∴不等式组的解集为﹣1<x<3,
故选:D.
7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程( )
A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330
【解答】解:设上个月卖出x双,根据题意得
(1+10%)x=330.
故选D.
8.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )
A.40° B.50° C.60° D.70°
【解答】解:∵由作法可知直线l是线段AB的垂直平分线,
∴AC=BC,
∴∠CAB=∠CBA=25°,
∴∠BCM=∠CAB+∠CBA=25°+25°=50°.
故选B.
9.(3分)下列哪一个是假命题( )
A.五边形外角和为360°
B.切线垂直于经过切点的半径
C.(3,﹣2)关于y轴的对称点为(﹣3,2)
D.抛物线y=x2﹣4x+2017对称轴为直线x=2
【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;
B、切线垂直于经过切点的半径是真命题,故B不符合题意;
C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;
D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;
故选:C.
10.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数( )
A.平均数 B.中位数 C.众数 D.方差
【解答】解:根据中位数的意义,
故只要知道中位数就可以了.
故选B.
11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是( )m.
A.20 B.30 C.30 D.40
【解答】解:在Rt△CDE中,
∵CD=20m,DE=10m,
∴sin∠DCE==,
∴∠DCE=30°.
∵∠ACB=60°,DF∥AE,
∴∠BGF=60°
∴∠ABC=30°,∠DCB=90°.
∵∠BDF=30°,
∴∠DBF=60°,
∴∠DBC=30°,
∴BC===20m,
∴AB=BC•sin60°=20×=30m.
故选B.
12.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
【解答】解:∵四边形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP与△ABQ中,,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正确;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴,
∴AO2=OD•OP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OE•OP;故②错误;
在△CQF与△BPE中,
∴△CQF≌△BPE,
∴CF=BE,
∴DF=CE,
在△ADF与△DCE中,,
∴△ADF≌△DCE,
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四边形OECF;故③正确;
∵BP=1,AB=3,
∴AP=4,
∵△PBE∽△PAD,
∴,
∴BE=,∴QE=,
∵△QOE∽△PAD,
∴,
∴QO=,OE=,
∴AO=5﹣QO=,
∴tan∠OAE==,故④正确,
故选C.
二、填空题
13.(3分)因式分解:a3﹣4a= a(a+2)(a﹣2) .
【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).
故答案为:a(a+2)(a﹣2).
14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .
【解答】解:依题意画树状图得:
∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,
∴所摸到的球恰好为1黑1白的概率是:=.
故答案为:.
15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)= 2 .
【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2
故答案为:2
16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP= 3 .
【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90°,
∴四边形PQBR是矩形,
∴∠QPR=90°=∠MPN,
∴∠QPE=∠RPF,
∴△QPE∽△RPF,
∴==2,
∴PQ=2PR=2BQ,
∵PQ∥BC,
∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,
∴2x+3x=3,
∴x=,
∴AP=5x=3.
故答案为3.
三、解答题
17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.
【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,
=2﹣﹣2×+1+2,
=2﹣﹣+1+2,
=3.
18.(6分)先化简,再求值:(+)÷,其中x=﹣1.
【解答】解:当x=﹣1时,
原式=×
=3x+2
=﹣1
19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.
类型
频数
频率
A
30
x
B
18
0.15
C
m
0.40
D
n
y
(1)学生共 120 人,x= 0.25 ,y= 0.2 ;
(2)补全条形统计图;
(3)若该校共有2000人,骑共享单车的有 500 人.
【解答】解:(1)由题意总人数==120人,
x==0.25,m=120×0.4=48,
y=1﹣0.25﹣0.4﹣0.15=0.2,
n=120×0.2=24,
(2)条形图如图所示,
(3)2000×0.25=500人,
故答案为500.
20.(8分)一个矩形周长为56厘米.
(1)当矩形面积为180平方厘米时,长宽分别为多少?
(2)能围成面积为200平方厘米的矩形吗?请说明理由.
【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有
x(28﹣x)=180,
解得x1=10(舍去),x2=18,
28﹣x=28﹣18=10.
故长为18厘米,宽为10厘米;
(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有
x(28﹣x)=200,
即x2﹣28x+200=0,
则△=282﹣4×200=784﹣800<0,原方程无实数根,
故不能围成一个面积为200平方厘米的矩形.
21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.
(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;
(2)求证:AD=BC.
【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,
∴反比例函数的解析式为y=,
将点B(a,1)代入y=中,得,a=8,
∴B(8,1),
将点A(2,4),B(8,1)代入y=kx+b中,得,,
∴,
∴一次函数解析式为y=﹣x+5;
(2)∵直线AB的解析式为y=﹣x+5,
∴C(10,0),D(0,5),
如图,
过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,
∴E(0,4),F(8,0),
∴AE=2,DE=1,BF=1,CF=2,
在Rt△ADE中,根据勾股定理得,AD==,
在Rt△BCF中,根据勾股定理得,BC==,
∴AD=BC.
22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.
(1)求⊙O的半径r的长度;
(2)求sin∠CMD;
(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.
【解答】解:(1)如图1中,连接OC.
∵AB⊥CD,
∴∠CHO=90°,
在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,
∴r2=42+(r﹣2)2,
∴r=5.
(2)如图1中,连接OD.
∵AB⊥CD,AB是直径,
∴==,
∴∠AOC=∠COD,
∵∠CMD=∠COD,
∴∠CMD=∠COA,
∴sin∠CMD=sin∠COA==.
(3)如图2中,连接AM.
∵AB是直径,
∴∠AMB=90°,
∴∠MAB+∠ABM=90°,
∵∠E+∠ABM=90°,
∴∠E=∠MAB,
∴∠MAB=∠MNB=∠E,
∵∠EHM=∠NHF
∴△EHM∽△NHF,
∴=,
∴HE•HF=HM•HN,
∵HM•HN=AH•HB,
∴HE•HF=AH•HB=2•(10﹣2)=16.
23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
【解答】解:
(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),
∴,解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)由题意可知C(0,2),A(﹣1,0),B(4,0),
∴AB=5,OC=2,
∴S△ABC=AB•OC=×5×2=5,
∵S△ABC=S△ABD,
∴S△ABD=×5=,
设D(x,y),
∴AB•|y|=×5|y|=,解得|y|=3,
当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);
当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);
综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);
(3)∵AO=1,OC=2,OB=4,AB=5,
∴AC==,BC==2,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,即BC⊥AC,
如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,
由题意可知∠FBC=45°,
∴∠CFB=45°,
∴CF=BC=2,
∴=,即=,解得OM=2,=,即=,解得FM=6,
∴F(2,6),且B(4,0),
设直线BE解析式为y=kx+m,则可得,解得,
∴直线BE解析式为y=﹣3x+12,
联立直线BE和抛物线解析式可得,解得或,
∴E(5,﹣3),
∴BE==.