- 718.60 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2011中考冲刺数学专题6——综合型问题
例题1 (2010四川攀枝花)如图,在矩形ABCD中,AB=6,AD=2,点P是边BC上的动点(点P不与点B、C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点。设CP=x, △PQR与矩形ABCD重叠部分的面积为y。
(1)求∠CPQ的度数。
(2)当x取何值时,点R落在矩形ABCD的边AB上?
(3)当点R在矩形ABCD外部时,求y与x的函数关系式。并求此时函数值y的取值范围。
例题3 (2010 浙江义乌)如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F.
(1)如图2,当BP=BA时,∠EBF= °,猜想∠QFC= °;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
图1
A
C
B
E
Q
F
P
图2
A
B
E
Q
P
F
C
图1
A
C
B
E
Q
F
P
(3)已知线段AB=,设BP=,点Q到射线BC的距离为y,求y关于的函数关系式.
例题4 (2010 重庆)已知:如图(1),在直角坐标系xOy中,边长为2的等边△的顶点在第一象限,顶点在轴的正半轴上. 另一等腰△的顶点在第四象限,,.现有两动点,分别从,两点同时出发,点以每秒1个单位的速度沿向点运动,点以每秒3个单位的速度沿运动,当其中一个点到达终点时,另一个点也随即停止.
(1)求在运动过程中形成的△的面积与运动的时 间之间的函数关系式,并写出自变量t的取值范围;
(2)在等边△的边上(点除外)存在点,使得△为等腰三角形,请直接写出所有符合条件的点D的坐标;
(3)如图(2),现有,其两边分别与, 交于点,,连接.将绕着 点旋转(旋转角),使得,始终在边和边上.试判断在这一过程中,△的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.
例题5 (2010甘肃兰州) 如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.
图1 图2
例题7 (2010 四川成都)在平面直角坐标系中,抛物线与轴交于两点(点在点的左侧),与轴交于点,点的坐标为,若将经过两点的直线沿轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线.
(1)求直线及抛物线的函数表达式;
(2)如果P是线段上一点,设、的面积分别为、,且,求点P的坐标;
(3)设⊙Q的半径为l,圆心在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为,圆心在抛物线上运动,则当取何值时,⊙Q与两坐轴同时相切?
解答:(1)∵沿轴向下平移3个单位后恰好经过原点,
∴,。
将 代入,得。解得。
∴直线AC的函数表达式为。
∵抛物线的对称轴是直线
∴解得
∴抛物线的函数表达式为。
(2)如图,过点B作BD⊥AC于点D。
∵,
∴
∴。
过点P作PE⊥x轴于点E,
∵PE∥CO,∴△APE∽△ACO,
∴,
∴
∴,解得
∴点P的坐标为
(3)(Ⅰ)假设⊙Q在运动过程中,存在与坐标轴相切的情况。
设点Q的坐标为。
① 当⊙Q与y轴相切时,有,即。
当时,得,∴
当时,得,∴
② 当⊙Q与x轴相切时,有,即
当时,得,即,解得,∴
当时,得,即,解得,∴,。
综上所述,存在符合条件的⊙Q,其圆心Q的坐标分别为,,,,。
(Ⅱ)设点Q的坐标为。
当⊙Q与两坐标轴同时相切时,有。
由,得,即,
∵△=
∴此方程无解。
由,得,即,
解得
∴当⊙Q的半径时,⊙Q与两坐标轴同时相切。
例题8 (2010湖南常德)如图, 已知抛物线与轴交于A (-4,0) 和B(1,0)两点,与轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF//AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.
解答:(1)由二次函数与轴交于、两点可得:
解得:
故所求二次函数的解析式为.
(2)∵S△CEF=2 S△BEF, ∴
∵EF//AC, ∴,
∴△BEF~△BAC,
∴得
故E点的坐标为(,0).
(3)解法一:由抛物线与轴的交点为,则点的坐标为(0,-2).若设直线的解析式为,则有 解得:
故直线的解析式为.
若设点的坐标为,又点是过点所作轴的平行线与直线的交点,则点的坐标为(.则有:
=
=
即当时,线段取大值,此时点的坐标为(-2,-3)
解法二:延长交轴于点,则.要使线段最长,则只须△的面积取大值时即可.
设点坐标为(,则有:
=
=
=
=
= =-
即时,△的面积取大值,此时线段最长,则点坐标为(-2,-3)
【技巧提炼】
解数学综合题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。
1、 以坐标系为桥梁,运用数形结合思想
纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。
2、 以直线或抛物线知识为载体,运用函数与方程思想
直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。
3、 利用条件或结论的多变性,运用分类讨论的思想
分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
4、 综合多个知识点,运用等价转换思想
任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。
【体验中考】
1.(2010 福建德化)已知:如图,点是正方形的对角线上的一个动点(、除外),作于点,作于点,设正方形的边长为,矩形的周长为,在下列图象中,大致表示与之间的函数关系的是( ).
x
y
0
A
x
y
0
D
x
y
0
B
y
x
0
C
P
D
A
B
C
C
E
F
2.(2010 四川南充)如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是( ).
l1
l2
A
B
M
N
O
1
(A)
(B)若MN与⊙O相切,则
(C)若∠MON=90°,则MN与⊙O相切
(D)l1和l2的距离为2
3.(2010湖北鄂州)如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上, 点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是( )
A. B. C.4 D.6
4.(2010湖北宜昌)如图,在圆心角为90°的扇形MNK中,动点P从点M出发,沿MNKM运动,最后回到点M的位置。设点P运动的路程为x,P与M两点之间的距离为y,其图象可能是( )。
5.(2010湖南怀化)图9是二次函数的图象,其顶点坐标为M(1,-4).
(1)求出图象与轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的
坐标;若不存在,请说明理由;
(3)将二次函数的图象在轴下方的部分沿轴翻折,图象的其余部分保持不变,
得到一个新的图象,请你结合这个新的图象回答:当直线与此
图象有两个公共点时,的取值范围.
6.(2010湖北鄂州)如图,在直角坐标系中,A(-1,0),B(0,2),一动点P沿过B点且垂直于AB的射线BM运动,P点的运动速度为每秒1个单位长度,射线BM与x轴交与点C.
(1)求点C的坐标.
(2)求过点A、B、C三点的抛物线的解析式.
(3)若P点开始运动时,Q点也同时从C出发,以P点相同的速度沿x轴负方向向点A运动,t秒后,以P、Q、C为顶点的三角形为等腰三角形.(点P到点C时停止运动,点Q也同时停止运动)求t的值.
(4)在(2)(3)的条件下,当CQ=CP时,求直线OP与抛物线的交点坐标.
7.(2010湖北荆州)如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△,求△与五边形OEFBC重叠部分的面积.
8.(2010湖北省咸宁)如图,直角梯形ABCD中,AB∥DC,,,.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒). 全品中考网
(1)当时,求线段的长;
(2)当0<t<2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;
(3)当t>2时,连接PQ交线段AC于点R.请探究是否为定值,若是,试求这个定值;若不是,请说明理由.
A
B
C
D
(备用图1)
A
B
C
D
(备用图2)
Q
A
B
C
D
l
M
P
E
9.(2010江苏扬州)在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围)②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
答案
1.【答案】A
2.【答案】B
3.【答案】A
4.【答案】B
5.【答案】(1) 因为M(1,-4) 是二次函数的顶点坐标,
所以
令解之得.
∴A,B两点的坐标分别为A(-1,0),B(3,0)
(2) 在二次函数的图象上存在点P,使
设则,
又,
∴
∵二次函数的最小值为-4,∴.
当时,.
故P点坐标为(-2,5)或(4,5)
(3)如图1,当直线经过A点时,可得
当直线经过B点时,可得
由图可知符合题意的的取值范围为
6.【答案】
(1)点C的坐标是(4,0);
(2)设过点A、B、C三点的抛物线的解析式为y=ax2+bx+c(a≠0),将点A、B、C三点的坐标代入得:
解得,∴抛物线的解析式是:y= x2+x+2.
(3)设P、Q的运动时间为t秒,则BP=t,CQ=t.以P、Q、C为顶点的三角形为等腰三角形,可分三种情况讨论.
①若CQ=PC,如图所示,则PC= CQ=BP=t.∴有2t=BC=,∴t=.
②若PQ=QC,如图所示,过点Q作DQ⊥BC交CB于点D,则有CD=PD.由△ABC∽△QDC,可得出PD=CD=,∴,解得t=.
③若PQ=PC,如图所示,过点P作PE⊥AC交AC于点E,则EC=QE=PC,∴t=(-t),解得t=.
(4)当CQ=PC时,由(3)知t=,∴点P的坐标是(2,1),∴直线OP的解析式是:y=x,因而有x =x2+x+2,即x2-2x-4=0,解得x=1±,∴直线OP与抛物线的交点坐标为(1+,)和(1-,).
7.【答案】(1)D点的坐标是.
(2)连结OD,如图(1),
由结论(1)知:D在∠COA的平分线上,则
∠DOE=∠COD=45°,又在梯形DOAB中,∠BAO=45°,∴OD=AB=3
由三角形外角定理得:∠1=∠DEA-45°,又∠2=∠DEA-45°
∴∠1=∠2, ∴△ODE∽△AEF
∴,即:
∴y与x的解析式为:
(3)当△AEF为等腰三角形时,存在EF=AF或EF=AE或AF=AE共3种情况.
① 当EF=AF时,如图(2).
∠FAE=∠FEA=∠DEF=45°,
∴△AEF为等腰直角三角形.D在A’E上(A’E⊥OA),
B在A’F上(A’F⊥EF)
∴△A’EF与五边形OEFBC重叠的面积为
四边形EFBD的面积.
∵
∴
∴
∴(也可用)
②当EF=AE时,如图(3),
此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
∠DEF=∠EFA=45°, DE∥AB , 又DB∥EA
∴四边形DEAB是平行四边形
∴AE=DB=
∴
③当AF=AE时,如图(4),四边形AEA’F为菱形且△A’EF在五边形OEFBC内.
∴此时△A’EF与五边形OEFBC重叠部分面积为△A’EF面积.
由(2)知△ODE∽△AEF,则OD=OE=3
∴AE=AF=OA-OE=
过F作FH⊥AE于H,则
∴
综上所述,△A’EF与五边形OEFBC重叠部分的面积为或1或
8.【答案】(1)过点C作于F,则四边形AFCD为矩形.
∴,.
Q
A
B
C
D
l
M
P
E
F
此时,Rt△AQM∽Rt△ACF.
∴.
即,∴.
(2)∵为锐角,故有两种情况:
①当时,点P与点E重合.
A
B
C
D
(备用图1)
Q
P
E
l
M
此时,即,∴.
②当时,如备用图1,
此时Rt△PEQ∽Rt△QMA,∴.
由(1)知,,
而,
∴. ∴.
综上所述,或.
(3)为定值.
当>2时,如备用图2,
A
B
C
D
(备用图2)
M
Q
R
F
P
.
由(1)得,.
∴. ∴.
∴. ∴.
∴四边形AMQP为矩形. ∴∥.
∴△CRQ∽△CAB.
∴.
9.【答案】(1)∵AC=3,BC=4
∴AB=5
∵AC·BC=AB·CD,
∴CD=,AD=
(2)①当0<x≤时
∵EF∥CD
∴△AEF∽△ADC
∴
即EF=x
∴y=·x·x=
当<x≤5时
易得△BEF∽△BDC,同理可求EF=(5—x)
∴y=·x·(5—x)=≤
②当0<x≤时,y随x的增大而增大.
y=≤,即当x=时,y最大值为
当<x≤5时,
∵
∴当时,y的最大值为
∵<
∴当时,y的最大值为
(3)假设存在
当0<x≤5时,AF=6—x
∴0<6—x<3
∴3<x<6
∴3<x≤5
作FG⊥AB与点G
由△AFG∽△ACD可得
∴,即FG=
∴x·=
∴=3,即2x2-12x+5=0
解之得x1=,x2=
∵3<x1≤5
∴x1=符合题意
∵x2=<3
∴x2不合题意,应舍去
∴存在这样的直线EF,此时,x=