- 599.00 KB
- 2021-05-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2016年河南省信阳市新县一中中考数学模拟试卷(一)
一、选择题(共8小题,每小题3分,满分24分)
1.在,0,﹣1,这四个实数中,最大的是( )
A. B.0 C.﹣1 D.
2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为( )
A.7.6×10﹣8 B.0.76×10﹣9 C.7.6×108 D.0.76×109
3.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )
A.65° B.55° C.45° D.35°
4.如图是某工厂要设计生产的正六棱柱的立体图形,它的主视图是( )
A. B. C. D.
5.为了解本地区老年人一年中生病次数,下列样本抽取方式最合适的是( )
A.到公园里调查100名晨练老人
B.到医院调查100名老年病人
C.到某小区调查10名老年居民
D.利用户籍资料,按规则抽查10%的老年人
6.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B. C. D.
7.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )
A.4 B.4 C.4 D.28
8.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An﹣1为OA的n等分点,B1、B2、B3、…Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An﹣1Bn﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、Cn﹣1,当B25C25=8C25A25时,则n的值为( )
A.75 B.15 C.25 D.50
二、填空题(共7小题,每小题3分,满分21分)
9.计算:2﹣1﹣3×= .
10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F, =,DE=6,则EF= .
11.若点P1(﹣1,m),P2(﹣2,m﹣2)在反比例函数y=的图象上,则m= .
12.已知点A(x1,y1),点(x2,y2)是二次函数y=x2﹣2x+3上不重合的两个点,且y1=y2,则x=x1+x2,y的值为 .
13.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”,若十位上数字为7,则从5,6,8,9中任选两数,与7组成“中高数”的概率是 .
14.如图,某实践小组要在广场一角的扇形区域内种植红、黄两种花,半径OA=4米,C是OA的中点,点D在上,CD∥OB,则图中种植黄花(即阴影部分)的面积是 (结果保留π).
15.已知等腰三角形ABC,AD为BC边上的高线,且有,AC上有一点E,并且满足AE:EC=2:3,则tan∠ADE的值是 .
三、解答题
16.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.
17.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).
18.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)
频数
百分比
2≤x<3
2
4%
3≤x<4
12
24%
4≤x<5
5≤x<6
10
20%
6≤x<7
12%
7≤x<8
3
6%
8≤x<9
2
4%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.
19.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.
20.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
21.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获得W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
22.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
(i)求证:△CAE∽△CBF;
(ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
23.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
2016年河南省信阳市新县一中中考数学模拟试卷(一)
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)
1.在,0,﹣1,这四个实数中,最大的是( )
A. B.0 C.﹣1 D.
【考点】实数大小比较.
【分析】利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.
【解答】解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,
0<<1,1<<2,
∴﹣1<0<<,
故选D.
2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为( )
A.7.6×10﹣8 B.0.76×10﹣9 C.7.6×108 D.0.76×109
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.000000076=7.6×10﹣8.
故选:A.
3.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为( )
A.65° B.55° C.45° D.35°
【考点】平行线的性质.
【分析】根据平行线的性质求出∠2的度数即可.
【解答】解:∵AB∥CD,∠1=135°,
∴∠2=180°﹣135°=45°.
故选C.
4.如图是某工厂要设计生产的正六棱柱的立体图形,它的主视图是( )
A. B. C. D.
【考点】简单几何体的三视图.
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【解答】解:根据主视图的定义,可得它的主视图为:.
故选:A.
5.为了解本地区老年人一年中生病次数,下列样本抽取方式最合适的是( )
A.到公园里调查100名晨练老人
B.到医院调查100名老年病人
C.到某小区调查10名老年居民
D.利用户籍资料,按规则抽查10%的老年人
【考点】抽样调查的可靠性.
【分析】采取抽样调查时,应能够保证被抽中的调查样本在总体中的合理、均匀分布,调查出现倾向性偏差的可能性是极小的,样本对总体的代表性很强.
【解答】解:A,B选项选择的地点没有代表性,公园里的老人都比较注意远动,身体比较健康,医院的病人太多;
C、选项调查10人数量太少;
D、随机抽查了本地区10%的老年人,具有代表性.
故选D.
6.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B. C. D.
【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.
【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.
【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,
∴,
解得:a<﹣1,
则a的取值范围在数轴上表示为:
.
故选:C.
7.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为( )
A.4 B.4 C.4 D.28
【考点】菱形的性质;三角形中位线定理.
【分析】首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.
【解答】解:∵E,F分别是AB,BC边上的中点,EF=,
∴AC=2EF=2,
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC=,OB=BD=2,
∴AB==,
∴菱形ABCD的周长为4.
故选:C.
8.如图,边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、…、An﹣1为OA的n等分点,B1、B2、B3、…Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、…、An﹣1Bn﹣1,分别交y=x2(x≥0)于点C1、C2、C3、…、Cn﹣1,当B25C25=8C25A25时,则n的值为( )
A.75 B.15 C.25 D.50
【考点】二次函数图象上点的坐标特征.
【分析】根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
【解答】解:∵正方形OABC的边长为n,点A1,A2,…,An﹣1为OA的n等分点,点B1,B2,…,Bn﹣1为CB的n等分点,
∴OA25=•n=25,A25B25=n,
∵B25C25=8C25A25,
∴C25(25,),
∵点C25在y=x2(x≥0)上,
∴=×(25)2,
解得n=75.
故选A.
二、填空题(共7小题,每小题3分,满分21分)
9.计算:2﹣1﹣3×= ﹣1 .
【考点】立方根;负整数指数幂.
【分析】先依据负整数指数幂的性质、立方根的性质进行计算,然后再依据有理数的乘法和减法法则计算即可.
【解答】解:原式=﹣3×=﹣1.
故答案为:﹣1.
10.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F, =,DE=6,则EF= 9 .
【考点】平行线分线段成比例.
【分析】根据平行线分线段成比例定理得到=,即=,然后根据比例性质求EF.
【解答】解:∵AD∥BE∥CF,
∴=,即=,
∴EF=9.
故答案为9.
11.若点P1(﹣1,m),P2(﹣2,m﹣2)在反比例函数y=的图象上,则m= 4 .
【考点】反比例函数图象上点的坐标特征.
【分析】根据反比例函数图象上的点纵横坐标之积为定值列出m的一元一次方程,求出m的值即可.
【解答】解:∵P1(﹣1,m),P2(﹣2,m﹣2)在反比例函数y=的图象上,
∴﹣m=﹣2×(m﹣2),
∴m=4,
故答案为4.
12.已知点A(x1,y1),点(x2,y2)是二次函数y=x2﹣2x+3上不重合的两个点,且y1=y2,则x=x1+x2,y的值为 3 .
【考点】二次函数图象上点的坐标特征.
【分析】根据点在函数图象上的意义求出x=x1+x2 的值,再代入二次函数的解析式求得对应的y的值.
【解答】解:∵点(x1,y1)与点(x2,y2)是二次函数y=x2﹣2x+3上不重合的两个点,
∴y1=y=x12﹣2x1+3,y2=x22﹣2x2+3.
又∵y1=y2,
∴x12﹣2x1+3=x22﹣2x2+3,
x12﹣x22=2(x1﹣x2 ),
∵点(x1,y1)与点(x2,y2)是二次函数y=x2﹣2x+3上不重合的两个点,
∴x1﹣x2≠0,
∴x1+x2=2,
∴x=x1+x2=2,则:y=22﹣2×2+3=3.
即:当x=x1+x2 时,y的值为3
13.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”,若十位上数字为7,则从5,6,8,9中任选两数,与7组成“中高数”的概率是 .
【考点】列表法与树状图法.
【分析】先画树状图展示所有12种等可能的结果数,再找出任选两个不同的数,与7组成“中高数”的结果数,然后根据概率公式求解.
【解答】解:画树状图为:
,
一共有12种可能,与7组成“中高数”的有2种,故与7组成“中高数”的概率是: =.
故答案为:.
14.如图,某实践小组要在广场一角的扇形区域内种植红、黄两种花,半径OA=4米,C是OA的中点,点D在上,CD∥OB,则图中种植黄花(即阴影部分)的面积是 π﹣2 (结果保留π).
【考点】扇形面积的计算.
【分析】连接OD,根据直角三角形的性质求出∠ODC的度数,根据扇形面积公式和三角形面积公式得到答案.
【解答】解:连接OD,
∵C是OA的中点,OA=OD,
∴OC=OD=2,CD=2,
∴∠ODC=30°,则∠DOA=60°,
种植黄花(即阴影部分)的面积=扇形AOD的面积﹣△DOC的面积
=﹣×2×2
=π﹣2,
故答案为:π﹣2.
15.已知等腰三角形ABC,AD为BC边上的高线,且有,AC上有一点E,并且满足AE:EC=2:3,则tan∠ADE的值是 或或 .
【考点】解直角三角形.
【分析】分三种情况进行讨论:①如果AB=AC,过E点作CD的平行线交AD于F.②如果BA=BC,过E点作CD的平行线交AD于F.③如果CA=CB,过E点作CD的平行线交AD于F,作CG⊥AB于G.利用锐角三角函数的定义、平行线分线段成比例定理可求出∠ADE的正切值.
【解答】解:分三种情况:
①如果AB=AC,过E点作CD的平行线交AD于F.如图1.
∵AD为BC边上的高线,tan∠B=,
∴EF⊥AD,tan∠C=.
设AE=2a,
∵AE:CE=2:3,
∴CE=3a,AC=5a.
∵tan∠C=,
∴sin∠C=,cos∠C=.
在直角△ADC中,
AD=ACsin∠C=5a×=3a.
在直角△AFE中,
AF=AE×sin∠AEF=AE×sin∠C=2a×=a.
EF=AE×cos∠AEF=AE×cos∠C=2a×=a.
DF=AD﹣AF=3a﹣a=a.
在直角△DFE中,
tan∠ADE===;
②如果BA=BC,过E点作CD的平行线交AD于F.如图2.
∵AD为BC边上的高线,tan∠B==,
∴可设AD=3k,则BD=4k,
由勾股定理得AB=5k,
∴BC=AB=5k,DC=AC﹣BD=k.
∵EF∥CD,AE:EC=2:3,
∴===,
∴==,
∴AF=k,EF=k,
∴DF=AD﹣AF=3k﹣k=k.
在直角△DFE中,
tan∠ADE===;
③如果CA=CB,过E点作CD的平行线交AD于F,作CG⊥AB于G.如图2.
∵在直角△BCG中,tan∠B==,
∴可设CG=3b,则BG=4b,AB=2BG=8b,
由勾股定理得BC=5b,则AC=BC=5b,
∵AE:EC=2:3,
∴AE=2b,EC=3b.
∵在直角△ABD中,tan∠B==,AB=8b,
∴AD=×8b=b,BD=×8b=b,
∴CD=BD﹣BC=b﹣5b=b.
∵EF∥CD,
∴===,
∴==,
∴AF=b,EF=b,
∴DF=AD﹣AF=b﹣b=b.
在直角△DFE中,
tan∠ADE===.
故答案为或或.
三、解答题
16.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你喜欢的x值代入求值.
【考点】分式的化简求值.
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出x的值,代入计算即可求出值.
【解答】解:原式=÷=•=,
当x=2时,原式=4(x≠﹣1,0,1).
17.如图1,▱ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.
(1)求证:四边形EGFH是平行四边形;
(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).
【考点】平行四边形的判定与性质;全等三角形的判定与性质.
【分析】(1)由四边形ABCD是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF,同理OG=OH,根据对角线互相平分的四边形是平行四边形得到结论;
(2)根据两组对边分别平行的四边形是平行四边形即可得到结论.
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EAO=∠FCO,
在△OAE与△OCF中,
∴△OAE≌△OCF,
∴OE=OF,
同理OG=OH,
∴四边形EGFH是平行四边形;
(2)解:与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH;
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∵EF∥AB,GH∥BC,
∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,
∵EF过点O,GH过点O,
∵OE=OF,OG=OH,
∴▱GBCH,▱ABFE,▱EFCD,▱EGFH,▱ACHD它们面积=▱ABCD的面积,
∴与四边形AGHD面积相等的所有平行四边形有▱GBCH,▱ABFE,▱EFCD,▱EGFH.
18.小军同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t),并绘制了样本的频数分布表和频数分布直方图(如图).
月均用水量(单位:t)
频数
百分比
2≤x<3
2
4%
3≤x<4
12
24%
4≤x<5
15
30%
5≤x<6
10
20%
6≤x<7
6
12%
7≤x<8
3
6%
8≤x<9
2
4%
(1)请根据题中已有的信息补全频数分布表和频数分布直方图;
(2)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?
(3)从月均用水量在2≤x<3,8≤x<9这两个范围内的样本家庭中任意抽取2个,求抽取出的2个家庭来自不同范围的概率.
【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;列表法与树状图法.
【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数,然后根据百分比的意义求解;
(2)利用总户数540乘以对应的百分比求解;
(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解.
【解答】解:(1)调查的总数是:2÷4%=50(户),
则6≤x<7部分调查的户数是:50×12%=6(户),
则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),所占的百分比是:×100%=30%.
月均用水量(单位:t)
频数
百分比
2≤x<3
2
4%
3≤x<4
12
24%
4≤x<5
15
30%
5≤x<6
10
20%
6≤x<7
6
12%
7≤x<8
3
6%
8≤x<9
2
4%
(2)中等用水量家庭大约有450×(30%+20%+12%)=279(户);
(3)在2≤x<3范围的两户用a、b表示,8≤x<9这两个范围内的两户用1,2表示.
则抽取出的2个家庭来自不同范围的概率是: =.
19.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为iFC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.
【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.
【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.
【解答】解:作DG⊥AE于G,则∠BDG=α,
易知四边形DCEG为矩形.
∴DG=CE=35m,EG=DC=1.6m
在直角三角形BDG中,BG=DG•×tanα=35×=15m,
∴BE=15+1.6=16.6m.
∵斜坡FC的坡比为iFC=1:10,CE=35m,
∴EF=35×=3.5,
∵AF=1,
∴AE=AF+EF=1+3.5=4.5,
∴AB=BE﹣AE=16.6﹣4.5=12.1m.
答:旗杆AB的高度为12.1m.
20.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.
(1)求k的值;
(2)求△BMN面积的最大值;
(3)若MA⊥AB,求t的值.
【考点】反比例函数综合题.
【分析】(1)把点A坐标代入y=(x>0),即可求出k的值;
(2)先求出直线AB的解析式,设M(t,),N(t, t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;
(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.
【解答】解:(1)把点A(8,1)代入反比例函数y=(x>0)得:
k=1×8=8,y=,
∴k=8;
(2)设直线AB的解析式为:y=kx+b,
根据题意得:,
解得:k=,b=﹣3,
∴直线AB的解析式为:y=x﹣3;
设M(t,),N(t, t﹣3),
则MN=﹣t+3,
∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,
∴△BMN的面积S是t的二次函数,
∵﹣<0,
∴S有最大值,
当t=3时,△BMN的面积的最大值为;
(3)∵MA⊥AB,
∴设直线MA的解析式为:y=﹣2x+c,
把点A(8,1)代入得:c=17,
∴直线AM的解析式为:y=﹣2x+17,
解方程组得: 或(舍去),
∴M的坐标为(,16),
∴t=.
21.某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获得W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
【考点】二次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.
【分析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得方程组即可解得答案;
(2)设购进A种钢笔每只z元,由题意得,求得42.4≤z<45,由于z是整数,得到z=43,44于是得到共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只,
(3)根据二次函数的解析式W=(30﹣20+a)(68﹣4a)=﹣4a2+28a+680=﹣4(a﹣)2+729即可求得结果.
【解答】解:(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得,
解得:,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90﹣z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30﹣20+a)(68﹣4a)=﹣4a2+28a+680=﹣4(a﹣)2+729,
∵﹣4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大=﹣4×(3﹣)2+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
22.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
(i)求证:△CAE∽△CBF;
(ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
【考点】四边形综合题.
【分析】(1)(i)首先根据四边形ABCD和EFCG均为正方形,可得,∠ACE=∠BCF;然后根据相似三角形判定的方法,推得△CAE∽△CBF即可.
(ii)首先根据△CAE∽△CBF,判断出∠CAE=∠CBF,再根据∠CAE+∠CBE=90°,判断出∠EBF=90°;然后在Rt△BEF中,根据勾股定理,求出EF的长度,再根据CE、EF的关系,求出CE的长是多少即可.
(2)首先根据相似三角形判定的方法,判断出△ACE∽△BCF,即可判断出,据此求出BF的长度是多少;然后判断出∠EBF=90°,在Rt△BEF中,根据勾股定理,求出EF的值是多少,进而求出k的值是多少即可.
(3)首先根据∠DAB=45°,可得∠ABC=180°﹣45°=135°,在△ABC中,根据勾股定理可求得AB2、BC2,AC2之间的关系,EF2、FC2,EC2之间的关系;然后根据相似三角形判定的方法,判断出△ACE∽△BCF,即可用n表示出BF的值;最后判断出EBF=90°,在Rt△BEF中,根据勾股定理,判断出m,n,p三者之间满足的等量关系即可.
【解答】(1)(i)证明:∵四边形ABCD和EFCG均为正方形,
∴,
∴∠ACB=∠ECF=45°,
∴∠ACE=∠BCF,
在△CAE和△CBF中,
,
∴△CAE∽△CBF.
(ii)解:∵△CAE∽△CBF,
∴∠CAE=∠CBF,,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
又∵,AE=2
∴,
∴,
∴EF2=BE2+BF2==3,
∴EF=,
∵CE2=2EF2=6,
∴CE=.
(2)如图②,连接BF,
∵==k,
∴BC=a,AB=ka,FC=b,EF=kb,
∴AC=,
CE==,
∴,∠ACE=∠BCF,
在△ACE和△BCF中,
,
∴△ACE∽△BCF,
∴,∠CAE=∠CBF,
又∵AE=2,
∴,
∴BF=,
∵∠CAE=∠CBF,∠CAE+∠CBE=90°,
∴∠CBE+∠CBF=90°,
∴∠EBF=90°,
∴EF2=BE2+BF2=1,
∵,
∴=,CE=3,
∴EF=,
∴1,
∴,
解得k=±,
∵==k>0,
∴k=.
(3)连接BF,同理可得∠EBF=90°,过C点作CH⊥AB延长线于H,
∵四边形ABCD为菱形,
∴AB=BC,设AB=BC=x,
∵∠CBH=∠DAB=45°,∴BH=CH=x,
∴AC2=AH2+CH2=(x+x)2+(x)2,=(2+)x2,
∴AB2:BC2:AC2=1:1:(2+),
同理可得EF2:FC2:EC2=1:1:(2+),
∴EF2==,
在△ACE和△BCF中,
,
∴△ACE∽△BCF,
∴==2+,∠CAE=∠CBF,
又∵AE=n,
∴,
∵∠CAE=∠CBF,∠CAE+∠CBE=90°,
∴∠CBE+∠CBF=90°,
∴∠EBF=90°,
∴EF2=BE2+BF2,
∴,
∴(2)m2+n2=p2,
即m,n,p三者之间满足的等量关系是:(2)m2+n2=p2.
23.已知抛物线y=﹣mx2+4x+2m与x轴交于点A(α,0),B(β,0),且=﹣2,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
【考点】二次函数综合题.
【分析】(1)利用根据与系数的关系得出α+β=,αβ=﹣2,进而代入求出m的值即可得出答案;
(2)利用轴对称求最短路线的方法,作点D关于y轴的对称点D′,点E关于x轴的对称点E′,得出四边形DNME的周长最小为:D′E′+DE,进而利用勾股定理求出即可;
(3)利用平行四边形的判定与性质结合P点纵坐标为±4,进而分别求出即可.
【解答】解:(1)由题意可得:α,β是方程﹣mx2+4x+2m=0的两根,由根与系数的关系可得,
α+β=,αβ=﹣2,
∵=﹣2,
∴=﹣2,即=﹣2,
解得:m=1,
故抛物线解析式为:y=﹣x2+4x+2;
(2)存在x轴上的点M,y轴上的点N,使得四边形DNME的周长最小,
∵y=﹣x2+4x+2=﹣(x﹣2)2+6,
∴抛物线的对称轴l为x=2,顶点D的坐标为:(2,6),
又∵抛物线与y轴交点C的坐标为:(0,2),点E与点C关于l对称,
∴E点坐标为:(4,2),
作点D关于y轴的对称点D′,点E关于x轴的对称点E′,
则D′的坐标为;(﹣2,6),E′坐标为:(4,﹣2),
连接D′E′,交x轴于M,交y轴于N,
此时,四边形DNME的周长最小为:D′E′+DE,如图1所示:
延长E′E,′D交于一点F,在Rt△D′E′F中,D′F=6,E′F=8,
则D′E′===10,
设对称轴l与CE交于点G,在Rt△DGE中,DG=4,EG=2,
∴DE===2,
∴四边形DNME的周长最小值为:10+2;
(3)如图2,P为抛物线上的点,过点P作PH⊥x轴,垂足为H,
若以点D、E、P、Q为顶点的四边形为平行四边形,则△PHQ≌△DGE,
∴PH=DG=4,
∴|y|=4,
∴当y=4时,﹣x2+4x+2=4,
解得:x1=2+,x2=2﹣,
当y=﹣4时,﹣x2+4x+2=﹣4,
解得:x3=2+,x4=2﹣,
故P点的坐标为;(2﹣,4),(2+,4),(2﹣,﹣4),(2+,﹣4).