• 700.00 KB
  • 2021-05-10 发布

陕西省中考数学试题word版含答案

  • 12页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
‎2015年陕西省初中毕业学业考试试题 数学 第Ⅰ卷(选择题 共30分)‎ 一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)‎ ‎1.计算:( )‎ A.1 B. C.0 D.‎ ‎2.如图是一个螺母的示意图,它的俯视图是( )‎ ‎3.下列计算正确的是( )‎ A. B. ‎ C. D. ‎ ‎4.如图,AB//CD,直线EF分别交直线AB、CD于点E、F,若∠1=46°30′,则∠2的度数为( )‎ A.43°30′ B.53°30′ ‎ C.133°30′ D.153°30′‎ ‎5.设正比例函数的图象经过点,且的值随值的增大而减小,则( )‎ A.2 B.-2 C.4 D.-4[来源:Z|xx|k.Com]‎ ‎6.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )‎ A.2个 B.3个 ‎ C.4个 D.5个 ‎7.不等式组的最大整数解为( )‎ A.8 B‎.6 C.5 D.4‎ ‎8.在平面直角坐标系中,将直线平移后,得到直线,则下列平移作法正确的是( )‎ A.将向右平移3个单位长度 B.将向右平移6个单位长度 ‎ C.将向上平移2个单位长度 D. 将向上平移4个单位长度 ‎ ‎9.在□ABCD中,AB=10,BC=14,E、F分别为边BC、AD上的点,若四边形AECF为正方形,则AE的长为( )‎ A.7 B.4或‎10 C.5或9 D.6或8‎ ‎10.下列关于二次函数的图象与轴交点的判断,正确的是( )‎ A.没有交点 B.只有一个交点,且它位于轴右侧 ‎ C.有两个交点,且它们均位于轴左侧 D.有两个交点,且它们均位于轴右侧 二、填空题(共4小题,每小题3分,计12分)‎ ‎11.将实数由小到大用“<” 号连起来,可表示为_________________。‎ ‎12.请从以下两小题中任选一个作答,若多选,则按第一题计分。‎ A.正八边形一个内角的度数为______________。‎ B.如图,有一滑梯AB,其水平宽度AC为‎5.3米,铅直高度BC为‎2.8米,则∠A的度数约为__________。(用科学计算器计算,结果精确到0.1°)‎ ‎13.如图,在平面直角坐标系中,过点M(-3,2)分别作轴、轴的垂线与反比例函数的图象交于A、B两点,则四边形MAOB的面积为______________。‎ ‎14.如图,AB为⊙0的弦,AB=6,点C是⊙0上的一个动点,且∠ACB=45°‎ ‎,若点M、N分别是AB、BC的中点,则MN长的最大值是______________。‎ 三、解答题(共11小题,计78分,解答应写出过程)‎ ‎15.(本题满分5分)计算:‎ ‎16.(本题满分5分)解分式方程:‎ ‎17.(本题满分5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分,(保留作图痕迹,不写作法)‎ ‎18.(本题满分5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对 她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图。‎ 请你根据以上信息,解答下列问题:‎ ‎(1)补全上面的条形统计图和扇形统计图;‎ ‎(2)被测试女生1分钟“仰卧起坐”个数的中位数落在_________等级;‎ ‎(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数。‎ ‎19. (本题满分7分)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD、CE⊥AC,且AE、CE相交于点E,求证AD=CE.‎ ‎20.(本题满分7分)晚饭后,小聪和小军在社区广场散步,小聪问小军:“‎ 你有多高?”小军一时语塞,小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高,于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长,已知广场地面由边长为‎0.8米的正方形地砖铺成,小聪的身高AC为‎1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ,请你根据以上信息,求出小军身高BE的长(结果精确到‎0.01米)‎ ‎21.(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。假设组团参加甲、乙两家旅行社两日游的人数均为x人。‎ ‎(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;‎ ‎(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。‎ ‎22. (本题满分7分)某中学要在全校学生中举办“中国梦·我的梦”‎ 主题演讲比赛,要求每班选一名代表参赛,九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛,经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛)。‎ 规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止。‎ 如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:‎ ‎(1)小亮掷得向上一面的点数为奇数的概率是多少、?‎ ‎(2)该游戏是否公平?请用列表或树状图等方法说明理由。‎ ‎(骰子:六个面上分别刻有1、2、3、4、5、6 个小圆点的小正方体)‎ ‎[来源:学。科。网Z。X。X。K]‎ ‎23.(本题满分8分)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E。‎ ‎(1)求证:∠BAD=∠E;‎ ‎(2)若⊙O的半径为5,AC=8,求BE的长。‎ ‎24.(本题满分10分)在平面直角坐标系中,抛物线y=x ‎+5x+4的顶点为M,与x轴交于A、B两点,与y轴交于C点。‎ ‎(1)求点A、B、C的坐标;‎ ‎(2)求抛物线y=x+5x+4关于坐标原点O对称的抛物线的函数表达式;‎ ‎(3)设(2)中所求抛物线的顶点为M`,与x轴交于A`、B`两点,与y轴交 于C`点,在以A、B、C、M、A`、B`、C`、M`这八个点中的四个点为顶 点的平行四边形中,求其中一个不是菱形的平行四边形的面积。‎ ‎25.(本题满分12分)如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC,‎ ‎∠ABC=60°,AD=8,BC=12.‎ ‎(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;‎ ‎(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;‎ ‎(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由。‎ ‎[来源:Z#xx#k.Com]‎ 参考答案 A卷 ‎1-5 ABBCB 6-10 DCADD ‎11、‎ ‎12、A、135° B、27.8°[来源:Zxxk.Com]‎ ‎13、10‎ ‎14、3‎ ‎17、‎ ‎18、‎ ‎19、‎ ‎20、‎ ‎21、‎ ‎22、‎ ‎23、‎ ‎24、‎ ‎[来源:学|科|网Z|X|X|K]‎ ‎25、‎